Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 901: 165933, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37536603

RESUMO

An essential prerequisite to safeguard pollinator species is characterisation of the multifaceted diversity of crop pollinators and identification of the drivers of pollinator community changes across biogeographical gradients. The extent to which intensive agriculture is associated with the homogenisation of biological communities at large spatial scales remains poorly understood. In this study, we investigated diversity drivers for 644 bee species/morphospecies in 177 commercial apple orchards across 33 countries and four global biogeographical biomes. Our findings reveal significant taxonomic dissimilarity among biogeographical zones. Interestingly, despite this dissimilarity, species from different zones share similar higher-level phylogenetic groups and similar ecological and behavioural traits (i.e. functional traits), likely due to habitat filtering caused by perennial monoculture systems managed intensively for crop production. Honey bee species dominated orchard communities, while other managed/manageable and wild species were collected in lower numbers. Moreover, the presence of herbaceous, uncultivated open areas and organic management practices were associated with increased wild bee diversity. Overall, our study sheds light on the importance of large-scale analyses contributing to the emerging fields of functional and phylogenetic diversity, which can be related to ecosystem function to promote biodiversity as a key asset in agroecosystems in the face of global change pressures.

2.
Mol Phylogenet Evol ; 119: 81-92, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29122650

RESUMO

The longhorn bee tribe Eucerini (Hymenoptera: Apidae) is a diverse, widely distributed group of solitary bees that includes important pollinators of both wild and agricultural plants. About half of the species in the tribe are currently assigned to the genus Eucera and to a few other related genera. In this large genus complex, comprising ca. 390 species, the boundaries between genera remain ambiguous due to morphological intergradation among taxa. Using ca. 6700 aligned nucleotide sites from six gene fragments, 120 morphological characters, and more than 100 taxa, we present the first comprehensive molecular, morphological, and combined phylogenetic analyses of the 'Eucera complex'. The revised generic classification that we propose is congruent with our phylogeny and maximizes both generic stability and ease of identification. Under this new classification most generic names are synonymized under an expanded genus Eucera. Thus, Tetralonia, Peponapis, Xenoglossa, Cemolobus, and Syntrichalonia are reduced to subgeneric rank within Eucera, and Synhalonia is retained as a subgenus of Eucera. Xenoglossodes is reestablished as a valid subgenus of Eucera while Tetraloniella is synonymized with Tetralonia and Cubitalia with Eucera. In contrast, we suggest that the venusta-group of species, currently placed in the subgenus Synhalonia, should be recognized as a new genus. Our results demonstrate the need to evaluate convergent loss or gain of important diagnostic traits to minimize the use of potentially homoplasious characters when establishing classifications. Lastly, we show that the Eucera complex originated in the Nearctic region in the late Oligocene, and dispersed twice into the Old World. The first dispersal event likely occurred 24.2-16.6 mya at a base of a clade of summer-active bees restricted to warm region of the Old World, and the second 13.9-12.3 mya at the base of a clade of spring-active bees found in cooler regions of the Holarctic. Our results further highlight the role of Beringia as a climate-regulated corridor for bees.


Assuntos
Abelhas/classificação , Filogenia , Filogeografia , Animais , Abelhas/anatomia & histologia , Bases de Dados Genéticas , Funções Verossimilhança , Característica Quantitativa Herdável , Análise de Sequência de DNA
3.
Environ Pollut ; 158(12): 3626-33, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20828901

RESUMO

Road runoff is a major source of environmental pollution, significantly threatening nearby aquatic habitats. Chemical analyses indicate high pollutant concentrations in the road's "first flush", but bioassays are more advantageous for addressing the cumulative effects of the numerous pollutants within the runoff. We used Bufo viridis embryos and larvae to assess the toxicity of road runoff from two major highways in Israel. We show, for the first time, that exposure to midseason runoff not only has an adverse effect on growth and development rates of B. viridis larvae but can also lead to increased rates of morphological deformations. Seasonal first flushes, despite having higher metal concentrations, did not adversely affect the toad larvae, apparently due to a counter effect of organic matter that potentially served as a supplementary energy resource. Road runoff can be a major cause for a qualitative decrease in the quality of aquatic habitats threatening amphibians in Israel.


Assuntos
Bufonidae/crescimento & desenvolvimento , Metais Pesados/toxicidade , Poluentes Químicos da Água/toxicidade , Poluição da Água/análise , Animais , Monitoramento Ambiental , Israel , Larva/crescimento & desenvolvimento , Chuva/química , Estações do Ano , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA