Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Animal ; 16(8): 100589, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35839617

RESUMO

Condensed tannins in plants are found free and attached to protein and fibre but it is not known whether these fractions influence rumen degradation and microbial colonisation. This study explored the rumen degradation of tropical tannin-rich plants and the relationship between the disappearance of free and bound condensed tannin fractions and microbial communities colonising plant particles using in situ and in vitro experiments. Leaves from Calliandra calothyrsus, Gliricidia sepium, and Leucaena leucocephala, pods from Acacia nilotica and the leaves of two agricultural by-products: Manihot esculenta and Musa spp. were incubated in situ in the rumen of three dairy cows to determine their degradability for up to 96 h. Tannin disappearance was determined at 24 h of incubation, and adherent microbial communities were examined at 3 and 12 h of incubation using a metataxonomic approach. An in vitro approach was also used to assess the effects of these plants on rumen fermentation parameters. All plants contained more than 100 g/kg of condensed tannins with a large proportion (32-61%) bound to proteins. Calliandra calothyrsus had the highest concentration of condensed tannins at 361 g/kg, whereas Acacia nilotica was particularly rich in hydrolysable tannins (350 g/kg). Free condensed tannins from all plants completely disappeared after 24-h incubation in the rumen. Disappearance of protein-bound condensed tannins was variable with values ranging from 93% for Gliricidia sepium to 21% for Acacia nilotica. In contrast, fibre-bound condensed tannin disappearance averaged âˆ¼ 82% and did not vary between plants. Disappearance of bound fractions of condensed tannins was not associated with the degradability of plant fractions. The presence of tannins interfered with the microbial colonisation of plants. Each plant had distinct bacterial and archaeal communities after 3 and 12 h of incubation in the rumen and distinct protozoal communities at 3 h. Adherent communities in tannin-rich plants had a lower relative abundance of fibrolytic microbes, notably Fibrobacter spp. whereas, archaea diversity was reduced in high-tannin-containing Calliandra calothyrsus and Acacia nilotica at 12 h of incubation. Concurrently, in vitro methane production was lower for Calliandra calothyrsus, Acacia nilotica and Leucaena leucocephala although for the latter total volatile fatty acids production was not affected and was similar to control. Here, we show that the total amount of hydrolysable and condensed tannins contained in a plant govern the interaction with rumen microbes affecting degradability and fermentation. The effect of protein- and fibre-bound condensed tannins on degradability is less important.


Assuntos
Fabaceae , Proantocianidinas , Ração Animal/análise , Animais , Bovinos , Fibras na Dieta/metabolismo , Feminino , Fermentação , Metano/metabolismo , Proantocianidinas/metabolismo , Rúmen/metabolismo , Taninos/metabolismo
2.
J Dairy Sci ; 105(1): 301-312, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34763916

RESUMO

Urine is a highly suitable biological matrix for metabolomics studies. Total collection for 24-h periods is the gold standard as it ensures the presence of all metabolites excreted throughout the day. However, in animal studies, it presents limitations related to animal welfare and also due to alterations of the metabolome originating from the use of acid for preventing microbial growth or microbial contamination. In this study, we investigated whether spot urine collection is a practical alternative to total collection for metabolomic studies in lactating cows. For this purpose, we collected urine samples from 4 lactating Holstein cows fed 4 diets in a 4 × 4 Latin square design. Urine was collected for 24 h using a collecting device (i.e., total collection) or collected once per day 4 h after the morning feeding (i.e., spot urine collection). Dietary treatments differed by the amount of nitrogen content (high vs. low) and by the nature of the energy (starch vs. fiber). Urine metabolome was analyzed by 2 untargeted complementary methods, nuclear magnetic resonance and hydrophilic-interaction liquid chromatography (HILIC) coupled to a time-of-flight mass spectrometer, and by 1 targeted method, HILIC-tandem mass spectrometry. Although sampling technique had an effect on the abundance of metabolites detected, spot urine samples were equally capable of showing differences in urine metabolome than samples from total collection. When considering nitrogen levels in the diet, the robustness and precision for discriminating high- and low-nitrogen diets was equally achieved with both sampling techniques. A total of 22 discriminant metabolites associated with the N level of diets were identified from untargeted HILIC coupled to a time-of-flight mass spectrometer (n = 9) and nuclear magnetic resonance (n = 11), and 2 from targeted HILIC-tandem mass spectrometry. Alternatively, starch or fiber in the diet induced less changes in the metabolome that were not clearly discriminated independently of the sampling technique. We concluded that spot urine collection can successfully reveal differences in the urine metabolome elicited by dietary N levels and be used as a substitute of total urinary 24-h collection for metabolomic studies.


Assuntos
Lactação , Coleta de Urina , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Feminino , Metaboloma , Metabolômica , Leite , Nitrogênio/metabolismo , Rúmen/metabolismo , Coleta de Urina/veterinária
3.
Animal ; 14(9): 1885-1891, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32252853

RESUMO

Many studies have shown that metabolic efficiency of ruminants can be significantly decreased when B-vitamin supply is insufficient. Under the present state of knowledge, the amounts of B vitamins available for intestinal absorption cannot be predicted based on diet composition. Therefore, in an attempt to increase our understanding of the effects of dietary factors, on B-vitamin supply for dairy cows, the effects of increasing amounts of extruded linseed in diets based on hay (permanent grassland hay, H; Experiment 1) or corn silage (CS; Experiment 2) on apparent ruminal synthesis (ARS) of thiamin, riboflavin, niacin, vitamin B6, folates and vitamin B12 were evaluated. In each experiment, four lactating Holstein cows fitted with cannulas in the rumen and the proximal duodenum were used in a 4 × 4 Latin square design. In both experiments, the dietary treatments consisted of an increasing supply of extruded linseed representing 0%, 5%, 10% or 15% of diet DM. The forage : concentrate ratios were 50 : 50 and 60 : 40 for Experiments 1 and 2, respectively. Duodenal flow was determined using YbCl3 as a marker. The ARS of each B vitamin was calculated as duodenal flow - daily intake. In both experiments, treatments did not affect thiamin, riboflavin, niacin and vitamin B12 duodenal flow or ARS. Increasing the dietary concentration of extruded linseed decreased folate intake in Experiment 1 and vitamin B6 intake in Experiment 2 but resulted in a greater duodenal flow of vitamin B6 and folates regardless of the forage used in basal diet. Greater dietary linseed concentrations decreased vitamin B6 apparent degradation in the rumen in CS-based diet only and increased folate ARS in both H- and CS-based diets. Increasing linseed concentration of isonitrogenous and isoenergetic diets increased vitamin B6 and folate supply to dairy cows, both with H- and CS-based diets.


Assuntos
Linho , Complexo Vitamínico B , Animais , Bovinos , Dieta/veterinária , Digestão , Feminino , Fermentação , Lactação , Leite , Rúmen/metabolismo , Silagem/análise , Zea mays
4.
J Environ Manage ; 231: 982-988, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30602259

RESUMO

Livestock is the main source of methane (CH4) emissions. It is important to accurately determine emissions from ruminants that meet standardized international guidelines for national greenhouse gas inventories. A new method to improve the accuracy of CH4 emissions that complies with IPCC rules for a Tier 3 method is described and evaluated. This method, developed by INRA (French Institute for Agricultural Research), was applied to the French inventory of CH4 emissions by ruminants and compared with the IPCC Tier 2 method. For enteric CH4, depending on the animal category, the INRA CH4 emission estimates lay between 88% and 114% of IPCC's. The INRA/IPCC ratio for enteric emission was close to unity and did not differ between methods (P = 0.43) for adult cows (i.e. most cattle). In France, feedlot manure is stored in aerobic conditions, and so the INRA/IPCC fit for manure emission was poorer (P < 0.05). The INRA/IPCC fit for enteric CH4 was very close between methods to that for total CH4 (P = 0.39), enteric CH4 representing 93% of total emissions. The main improvement is the use of a robust equation (from numerous data and diets), based on digestible organic matter intake (DOMI) corrected for the digestive interactions, to predict CH4 consistently from enteric and manure sources. It was developed for the French livestock inventory but is customizable for other countries. This new improved CH4 estimation method, based on equations from a large literature database, complies with IPCC rules for a Tier 3 method.


Assuntos
Metano , Ruminantes , Animais , Bovinos , Dieta , Feminino , França , Esterco
5.
Animal ; 13(7): 1421-1431, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30488812

RESUMO

Optimizing milk production efficiency implies diets allowing low methane (CH4) emissions and high dairy performance. We hypothesize that nature of energy (starch v. lipids) and lipid supplement types (monounsaturated fatty acid (MUFA) v. polyunsaturated fatty acid (PUFA) mitigate CH4 emissions and can induce low milk fat content via different pathways. The main objective of this experiment was to study the effects of starch-rich or lipid-supplemented diets that induce milk fat depression (MFD) on rumen biohydrogenation (RBH) of unsaturated fatty acids (FA) and enteric CH4 emissions in dairy cows. Four multiparous lactating Holstein cows (days in milk=61±11 days) were used in a 4×4 Latin square design with four periods of 28 days. Four dietary treatments, three of which are likely to induce MFD, were based (dry matter basis) on 56% maize silage, 4% hay and 40% concentrates rich in: (1) saturated fatty acid (SFA) from Ca salts of palm oil (PALM); (2) starch from maize grain and wheat (MFD-Starch); (3) MUFA (cis-9 C18:1) from extruded rapeseeds (MFD-RS); and (4) PUFA (C18:2n-6) from extruded sunflower seeds (MFD-SF). Intake and milk production were measured daily. Milk composition and FA profile, CH4 emissions and total-tract digestibility were measured simultaneously when animals were in open-circuit respiration chambers. Fermentation parameters were analysed from rumen fluid samples taken before feeding. Dry matter intake, milk production, fat and protein contents, and CH4 emissions were similar among the four diets. We observed a higher milk SFA concentration with PALM and MFD-Starch, and lower milk MUFA and trans-10 C18:1 concentrations in comparison to MFD-RS and MFD-SF diets, while trans-11 C18:1 remained unchanged among diets. Milk total trans FA concentration was greater for MFD-SF than for PALM and MFD-Starch, with the value for MFD-RS being intermediate. Milk C18:3n-3 content was higher for MFD-RS than MFD-SF. The MFD seems more severe with MFD-SF and MFD-RS than PALM and MFD-Starch diets, because of a decrease in milk SFA concentration and a stronger shift from trans-11 C18:1 to trans-10 C18:1 in milk. The MFD-SF diet increased milk trans FA (+60%), trans-10 C18:1 (+31%), trans-10,cis-12 CLA (+27%) and PUFA (+36%) concentrations more than MFD-RS, which explains the numerically lowest milk fat yield and indicates that RBH pathways of PUFA differ between these two diets. Maize silage-based diets rich in starch or different unsaturated FA induced MFD with changes in milk FA profiles, but did not modify CH4 emissions.


Assuntos
Bovinos/fisiologia , Dieta/veterinária , Ácidos Graxos/biossíntese , Lipídeos/administração & dosagem , Metano/biossíntese , Leite/química , Animais , Depressão , Carboidratos da Dieta , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/metabolismo , Suplementos Nutricionais , Ácidos Graxos Monoinsaturados/metabolismo , Feminino , Fermentação , Lactação , Lipídeos/análise , Metano/metabolismo , Leite/metabolismo , Óleo de Palmeira , Poaceae/metabolismo , Rúmen/metabolismo , Silagem/análise , Amido/administração & dosagem , Amido/metabolismo , Zea mays/metabolismo
6.
J Dairy Sci ; 101(7): 6085-6097, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29680648

RESUMO

The aim of the study was to compare the effect of fiber- or starch-rich diets based on grass silage, supplemented or not with bicarbonate, on CH4 emissions and milk fatty acid (FA) profile in dairy cows. The experiment was conducted as a 4 × 4 Latin square design with a 2 × 2 factorial arrangement: carbohydrate type [starch- or fiber-rich diets with dietary starch level of 23.1 and 5.9% on a dry matter basis, respectively], without or with bicarbonate addition [0 and 1% of the dry matter intake, respectively]. Four multiparous lactating Holstein cows were fed 4 diets with 42% grass silage, 8% hay, and 50% concentrate in 4 consecutive 4-wk periods: (1) starch-rich diet, (2) starch-rich diet with bicarbonate, (3) fiber-rich diet, and (4) fiber-rich diet with bicarbonate. Intake and milk production were measured daily and milk composition was measured weekly; CH4 emission and total-tract digestibility were measured simultaneously (5 d, wk 4) when animals were in open-circuit respiration chambers. Sensors continuously monitored rumen pH (3 d, wk 4), and fermentation parameters were analyzed from rumen fluid samples taken before feeding (1 d, wk 3). Cows fed starch-rich diets had less CH4 emissions (on average, -18% in g/d; -15% in g/kg of dry matter intake; -19% in g/kg of milk) compared with fiber-rich diets. Carbohydrate type did not affect digestion of nutrients, except starch, which increased with starch-rich diets. The decrease in rumen protozoa number (-36%) and the shift in rumen fermentation toward propionate at the expense of butyrate for cows fed the starch-rich diets may be the main factor in reducing CH4 emissions. Milk of cows fed starch-rich diets had lower concentrations in trans-11 C18:1, sum of cis-C18, cis-9,trans-11 conjugated linoleic acid (CLA), and sum of CLA, along with greater concentration of some minor isomers of CLA and saturated FA in comparison to the fiber-rich diet. Bicarbonate addition did not influence CH4 emissions or nutrient digestibility regardless of the carbohydrate type in the diet. Rumen pH increased with bicarbonate addition, whereas other rumen parameters and milk FA composition were almost comparable between diets. Feeding dairy cows a starch-rich diet based on grass silage helps to limit the negative environmental effect of ruminants, but does not lead to greater milk nutritional value because milk saturated FA content is increased.


Assuntos
Bicarbonatos/administração & dosagem , Bovinos/metabolismo , Ácidos Graxos/análise , Metano/biossíntese , Leite/química , Animais , Bicarbonatos/metabolismo , Dieta , Carboidratos da Dieta/administração & dosagem , Carboidratos da Dieta/metabolismo , Digestão , Feminino , Fermentação , Lactação , Poaceae , Rúmen , Silagem
7.
J Anim Sci ; 96(4): 1559-1569, 2018 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-29471429

RESUMO

Among techniques for estimating enteric methane (CH4) emission by ruminants, open-circuit respiration chambers (OC), the use of a gas tracer (SF6), and the GreenFeed (GF) device are the most commonly used. In this study, we compared these techniques in 8 dry cows receiving a diet made of 70% hay and 30% concentrates given in limited and constant amounts, in a 15-wk experiment. Two periods in free stalls for SF6 and GF and in chambers for OC were used; in addition, SF6 was determined in chambers for 1 period. Methane emission (g/d) and CH4 yield (g/kg DMI) were higher (P < 0.0001) for OC than for SF6 and GF (367, 310, and 319 g/d for OC, SF6, and GF, respectively). The difference between OC and GF was related to a difference in post-prandial rate of gas emission. The between-animal coefficient of variation of CH4 emission was higher for SF6 than for OC and GF (20.8, 13.5, and 12.0% on average, respectively). Correlation coefficients between OC and SF6 were high and significant for CH4 emission and CH4 yield (r = 0.782 and r = 0.717, respectively; P < 0.05), but not significant between OC and GF, or between SF6 and GF. Correlation coefficients were highly significant for SF6 determined either in free stalls or in chambers (r = 0.908 and 0.903 for CH4 in g/d and g/kg DMI, respectively; P < 0.01). Carbon dioxide (CO2) emission and CO2 yield were similar for GF and OC (10,003 and 9,887 g/d, 752 and 746 g/kg DMI, respectively); CO2 data obtained with SF6 were lower (7,718 g/d and 606 g/kg DMI; P < 0.0001), but this technique is not relevant for CO2 emission determination. Correlation coefficients between OC and GF were not significant for CO2 emission and CO2 yield. This set of results shows that differences between methods are minor for average values, but that individual correlations may limit their interchangeability for determining gas emissions of individual animals. This study also shows the reliability of GF on-farm determination of CH4 and CO2 emissions for groups of animals.


Assuntos
Técnicas Biossensoriais/veterinária , Dióxido de Carbono/análise , Bovinos/fisiologia , Metano/análise , Hexafluoreto de Enxofre/química , Ração Animal/análise , Animais , Dióxido de Carbono/metabolismo , Indústria de Laticínios , Dieta/veterinária , Ingestão de Alimentos , Feminino , Metano/metabolismo , Reprodutibilidade dos Testes , Ruminantes
8.
Animal ; 12(3): 501-507, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28807084

RESUMO

The combination of linseed and nitrate is known to decrease enteric methane emission in dairy cows but few studies have been carried out in fattening cattle for animal liveweight gain, enteric methane emission, animal health and presence of residues in beef products. To address this gap, 16 young bulls received a control (C) diet between weaning at 9 months and 14 months, then were split into two groups of eight balanced on feed intake, BW gain and methane emission to receive either the C diet or a diet moderately supplemented with extruded linseed and calcium nitrate (LN) for 2 months before being slaughtered. On a dry matter (DM) basis, the C diet contained 70% baled grass silage and 30% concentrate mainly made of maize, wheat and rapeseed meal. In the LN diet, rapeseed meal and a fraction of cereals were replaced by 35% extruded linseed and 6% calcium nitrate; linseed fatty acids and nitrate supply in the LN diet were 1.9% and 1.0%, respectively. Methane emission was measured continuously using the GreenFeed system. Methaemoglobin was determined every week in peripheral blood from bulls receiving the LN diet. Nitrate and nitrite concentrations were determined in rumen, liver and tongue sampled at slaughter. Dry matter intake tended to be lower for LN diet (P=0.10). Body weight gain was lower for LN diet (P=0.01; 1.60 and 1.26 kg/day for C and LN diet, respectively). Daily methane emission was 9% lower (P<0.001) for LN than C diet (249 and 271 g/day, respectively) but methane yield did not differ between diets (24.1 and 23.2 g/kg DM intake for C and LN diet, respectively, P=0.34). Methaemoglobin was under the limit of detection (<2% of total haemoglobin) for most animals and was always lower than 5.6%, suggesting an absence of risk to animal health. Nitrite and nitrate concentrations in offal did not differ between C and LN diets. In conclusion, a moderate supply of linseed and nitrate in bull feed failed to decrease enteric methane yield and impaired bull liveweight gain but without adverse effects for animal health and food safety.


Assuntos
Compostos de Cálcio/farmacologia , Bovinos/fisiologia , Suplementos Nutricionais , Ácidos Graxos/farmacologia , Linho/química , Metano/metabolismo , Nitratos/farmacologia , Ração Animal/análise , Animais , Brassica rapa , Dieta/veterinária , Grão Comestível , Masculino , Rúmen/metabolismo , Silagem/análise , Triticum , Zea mays
9.
J Dairy Sci ; 100(3): 1845-1855, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28109588

RESUMO

The effect of tea saponin supplementation in the ruminant diet on methane emissions, rumen fermentation, and digestive processes is still under debate. The objective of this study was to assess the effect of this plant extract on methanogenesis, total-tract digestibility, and lactating performances of dairy cows. The work included 2 independent and successive experiments. First, the effect of 7 tea saponin doses (from 0 to 0.50 g/L) on methane emissions and protozoa concentrations was tested in 2 repeated in vitro batch culture incubations using bovine rumen contents as inoculum and a cereal mixture as substrate. After 18 h of incubation, total gas production and composition as well as rumen fermentation parameters and protozoa concentration were analyzed. Increasing dosage of the plant extract reduced methane production and protozoa concentration, with a maximum reduction of 29% for CH4 (mL/g of substrate) and 51% for protozoa (105/mL). Tea saponin did not affect volatile fatty acids concentration, but marginally decreased total gas production by 5% at the highest dose. Second, a 2-period crossover design experiment was carried out with 8 lactating dairy cows fed a basal diet (54% corn silage, 6% hay, and 40% pelleted concentrates on a dry matter basis) without (control) or with 0.52% tea saponin (TSP). Each experimental period lasted 5 wk. Animals were fed ad libitum during the first 3 wk of the period (wk 1, 2, and 3) and restricted (95% of ad libitum intake) during the last 2 wk (wk 4 and 5). Intake and milk production were recorded daily. Methane emissions were quantified using open chambers (2 d, wk 4). Total-tract digestibility and nitrogen balance were determined from total feces and urine collected separately (5 d, wk 5). Rumen fermentation parameters and protozoa concentration were analyzed from samples taken after morning feeding (1 d, wk 5). Milk production, dry matter intake, and feed efficiency were reduced with TSP (-18, -12, and -8%, respectively). As daily methane production (g/d) was not affected, methane emissions (g/kg of dry matter intake) increased by 14% with TSP. Total-tract digestibility and nitrogen balance were similar between diets, except for acid detergent fiber digestibility, which tended to be improved with TSP (+4 percentage units). Rumen fermentation parameters and protozoa concentration were relatively unchanged by diets. Under the conditions of this experiment, tea saponin is not efficient to reduce methane emissions from dairy cows.


Assuntos
Lactação/efeitos dos fármacos , Metano/biossíntese , Animais , Bovinos , Dieta/veterinária , Digestão/efeitos dos fármacos , Feminino , Fermentação , Leite/química , Rúmen/metabolismo , Saponinas , Chá
11.
J Anim Physiol Anim Nutr (Berl) ; 100(6): 1149-1158, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27870287

RESUMO

An in vivo trial was conducted in sheep to investigate the effect of three tropical tannin-rich plants (TRP) on methane emission, intake and digestibility. The TRP used were leaves of Glyricidia sepium, Leucaena leucocephala and Manihot esculenta that contained, respectively, 39, 75 and 92 g condensed tannins/kg DM. Methane was determined with the sulphur hexafluoride tracer technique. Eight rumen-cannulated sheep of two breeds (four Texel, four Blackbelly) were used in two 4 × 4 Latin square designs. Four experimental diets were tested. They consisted in a tropical natural grassland hay based on Dichanthium spp. fed alone (C) or in association with G. sepium (G), L. leucocephala (L) or M. esculenta (M) given as pellets at 44% of the daily ration. Daily organic matter intake was higher in TRP diets (686, 984, 1054 and 1186 g/day for C, G, L and M respectively; p < 0.05) while apparent organic matter total tract digestibility was not affected (69.9%, 62.8%, 65.3% and 64.7% for C, G, L and M respectively; p > 0.05). Methane emission was 47.1, 44.9, 33.3 and 33.5 g/kg digestible organic matter intake for C, G, L and M, respectively, and was significantly lower (p < 0.05) for L and M than for G and C. Our results confirm the potential of some TRP to reduce methane production. The strong decrease in methane and the increase in intake with TRPs may be due to their presentation as pellets.


Assuntos
Ração Animal/análise , Dieta/veterinária , Fabaceae/química , Manihot/química , Ovinos/fisiologia , Taninos/farmacologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Metano/metabolismo , Folhas de Planta/química , Taninos/administração & dosagem
12.
Animal ; 10(7): 1173-81, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27075614

RESUMO

A previous study showed the additive methane (CH4)-mitigating effect of nitrate and linseed fed to non-lactating cows. Before practical application, the use of this new strategy in dairy cows requires further investigation in terms of persistency of methanogenesis reduction and absence of residuals in milk products. The objective of this experiment was to study the long-term effect of linseed plus nitrate on enteric CH4 emission and performance in dairy cows. We also assessed the effect of this feeding strategy on the presence of nitrate residuals in milk products, total tract digestibility, nitrogen (N) balance and rumen fermentation. A total of 16 lactating Holstein cows were allocated to two groups in a randomised design conducted in parallel for 17 weeks. Diets were on a dry matter (DM) basis: (1) control (54% maize silage, 6% hay and 40% concentrate; CON) or (2) control plus 3.5% added fat from linseed and 1.8% nitrate (LIN+NIT). Diets were equivalent in terms of CP (16%), starch (28%) and NDF (33%), and were offered twice daily. Cows were fed ad libitum, except during weeks 5, 16 and 17 in which feed was restricted to 95% of dry matter intake (DMI) to ensure complete consumption of meals during measurement periods. Milk production and DMI were measured weekly. Nitrate and nitrite concentrations in milk and milk products were determined monthly. Daily CH4 emission was quantified in open circuit respiration chambers (weeks 5 and 16). Total tract apparent digestibility, N balance and rumen fermentation parameters were determined in week 17. Daily DMI tended to be lower with LIN+NIT from week 4 to 16 (-5.1 kg/day on average). The LIN+NIT diet decreased milk production during 6 non-consecutive weeks (-2.5 kg/day on average). Nitrate or nitrite residuals were not detected in milk and associated products. The LIN+NIT diet reduced CH4 emission to a similar extent at the beginning and end of the trial (-47%, g/day; -30%, g/kg DMI; -33%, g/kg fat- and protein-corrected milk, on average). Diets did not affect N efficiency and nutrients digestibility. In the rumen, LIN+NIT did not affect protozoa number but reduced total volatile fatty acid (-12%) and propionate (-31%) concentrations. We concluded that linseed plus nitrate may have a long-term CH4-mitigating effect in dairy cows and that consuming milk products from cows fed nitrate may be safe in terms of nitrate and nitrite residuals. Further work is required to optimise the doses of linseed plus nitrate to avoid reduced cows performance.


Assuntos
Bovinos/fisiologia , Linho/química , Metano/metabolismo , Leite/química , Nitratos/química , Nitritos/química , Animais , Dieta/veterinária , Digestão/efeitos dos fármacos , Ácidos Graxos Voláteis/metabolismo , Feminino , Fermentação , Linho/metabolismo , Proteínas do Leite/metabolismo , Nitratos/metabolismo , Nitratos/farmacologia , Nitritos/metabolismo , Nitrogênio/metabolismo , Rúmen/metabolismo , Silagem/análise , Amido/metabolismo , Zea mays/metabolismo
13.
J Dairy Sci ; 99(5): 3445-3456, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26947299

RESUMO

We investigated the effects of increasing extruded linseed supply in diets based on hay (H; experiment 1) or corn silage (CS; experiment 2) on enteric methane (CH4) emission, rumen microbial and fermentation parameters, and rumen and total-tract digestibility. In each experiment, 4 lactating Holstein cows fitted with cannulas at the rumen and proximal duodenum were used in a 4×4 Latin square design (28-d periods). Cows were fed ad libitum a diet [50:50 and 60:40 forage:concentrate on a dry matter (DM) basis for experiments 1 and 2, respectively] without supplementation (H0, CS0) or supplemented with extruded linseed at 5% (H5, CS5), 10% (H10, CS10), and 15% (H15, CS15) of dietary DM (i.e., 1.8, 3.6 and 5.4% total fatty acids added, respectively). All measurements were carried out during the last 8 d of each period. Linseed supply linearly decreased daily CH4 emission in cows fed H diets (from 486 to 289g/d for H0 to H15, on average) and CS diets (from 354 to 207g/d for CS0 to CS15, on average). The average decrease in CH4 per kilogram of DM intake was, respectively, -7, -15, and -38% for H5, H10, H15 compared with the H0 diet, and -4, -8, and -34% for CS5, CS10, and CS15 compared with the CS0 diet. The same dose-response effect was observed on CH4 emission in percent of gross energy intake, per kilogram of nutrient digested, and per kilogram of 4% fat- and 3.3% protein-corrected milk (FPCM) in both experiments. Changes in the composition of rumen volatile fatty acids in response to increasing linseed supply resulted in a moderate or marked linear decrease in acetate:propionate ratio for H or CS diets, respectively. The depressive effect of linseed on total protozoa concentration was linear for H diets (-15 to -40%, on average, for H5 to H15 compared with H0) and quadratic for CS diets (-17 to -83%, on average, for CS5 to CS15 compared with CS0). Concentration of methanogens was similar among H or CS diets. The energetic benefits from the decreased CH4 emission with linseed supply in diets based on hay or corn silage did not improve digestibility or milk yield. Milk efficiency (kg of FPCM/kg of DM intake) was improved with linseed supply up to H10 in H diets and was unchanged in CS diets. Lower CH4 enteric emission from dairy cows fed linseed helps limit the environmental footprint of ruminant livestock.


Assuntos
Bovinos/fisiologia , Dieta/veterinária , Linho/química , Metano/metabolismo , Rúmen/metabolismo , Silagem/análise , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Animais , Bovinos/microbiologia , Suplementos Nutricionais/análise , Digestão/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Fermentação/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Rúmen/efeitos dos fármacos , Rúmen/microbiologia , Zea mays/química
14.
J Dairy Sci ; 99(4): 2730-2739, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26851844

RESUMO

Effects of nitrogen level and carbohydrate source on apparent ruminal synthesis (ARS) of thiamin, riboflavin, niacin, vitamin B6, folates, and vitamin B12 were evaluated using 4 lactating Holstein cows distributed in a 4 × 4 Latin square design with treatments following a 2 × 2 factorial arrangement. Cows were fitted with cannulas in the rumen and proximal duodenum. The treatments were 2 N levels and 2 carbohydrate sources. The diet with the high N level provided 14% crude protein, calculated to meet 110% of the protein requirements and an adequate supply in rumen-degradable protein, whereas the diet with the low N level contained 11% crude protein, calculated to meet 80% of the protein requirements with a shortage in rumen-degradable protein. Carbohydrate source treatments differed by their nature (i.e., high in starch from barley, corn, and wheat, or high in fiber from soybean hulls and dehydrated beet pulp). All 4 diets were isoenergetic, based on corn silage, and had the same forage-to-concentrate ratio (60:40, dry matter basis). Duodenal flow was determined using YbCl3 as a marker. Each B-vitamin ARS was calculated as duodenal flow minus daily intake. The intake of several B vitamins varied among treatments, but because the animals consumed a similar amount of feed every day (average of 20 kg of dry matter/d) the difference was mostly due to vitamin content of each ingredient and their relative proportion in the diets. Decreasing N concentration in the diet reduced vitamin B6 duodenal flow and increased its apparent ruminal degradation. It also decreased duodenal flow and ARS of folates. The high-starch diets increased duodenal flow and ruminal balance of riboflavin, vitamin B6, and folates, whereas the high-fiber diets increased vitamin B12 ARS and duodenal flow. These effects on apparent synthesis are possibly due to changes in ruminal fermentation.


Assuntos
Dieta/veterinária , Carboidratos da Dieta/metabolismo , Nitrogênio/metabolismo , Rúmen/metabolismo , Complexo Vitamínico B/biossíntese , Animais , Bovinos , Fibras na Dieta/metabolismo , Feminino , Fermentação , Hordeum/metabolismo , Lactação , Silagem/normas , Amido/metabolismo , Triticum/metabolismo , Vitamina B 12/farmacologia , Zea mays/metabolismo
15.
Animal ; 10(2): 221-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26776494

RESUMO

Animal tissues are naturally 15N enriched relative to their diet and the extent of this difference (Δ15Nanimal-diet) has been correlated to the efficiency of N assimilation in different species. The rationale is that transamination and deamination enzymes, involved in amino acid metabolism are likely to preferentially convert amino groups containing 14N over 15N. However, in ruminants the contribution of rumen bacterial metabolism relative to animal tissues metabolism to naturally enrich animal proteins in terms of 15N has been not assessed yet. The objective of this study was to assess the impact of rumen and digestion processes on the relationship between Δ15Nanimal-diet and efficiency of N utilization for milk protein yield (milk N efficiency (MNE); milk N yield/N intake) as well as the relationship between the 15N natural abundance of rumen bacteria and the efficiency of N use at the rumen level. Solid- and liquid-associated rumen bacteria, duodenal digesta, feces and plasma proteins were obtained (n=16) from four lactating Holstein cows fed four different diets formulated at two metabolizable protein supplies (80% v. 110% of protein requirements) crossed by two different dietary energy source (diets rich in starch v. fiber). We measured the isotopic N fractionation between animal and diet (Δ15Nanimal-diet) in these different body pools. The Δ15Nanimal-diet was negatively correlated with MNE when measured in solid-associated rumen bacteria, duodenal digesta, feces and plasma proteins, with the strongest correlation found for the latter. However, our results showed a very weak 15N enrichment of duodenal digesta (Δ15Nduodenal digesta-diet mean value=0.42) compared with that observed in plasma proteins (Δ15Nplasma protein-diet mean value=2.41). These data support the idea that most of the isotopic N fractionation observed in ruminant proteins (Δ15Nplasma protein-diet) has a metabolic origin with very little direct impact of the overall digestion process on the existing relationship between Δ15Nplasma protein-diet and MNE. The 15N natural abundance of rumen bacteria was not related to either rumen N efficiency (microbial N/available N) or digestive N efficiency (metabolizable protein supply/CP intake), but showing a modest positive correlation with rumen ammonia concentration. When using diets not exceeding recommended protein levels, the contribution of rumen bacteria and digestion to the isotopic N fractionation between animal proteins and diet is low. In our conditions, most of the isotopic N fractionation (Δ15Nplasma protein-diet) could have a metabolic origin, but more studies are warranted to confirm this point with different diets and approaches.


Assuntos
Bovinos/metabolismo , Digestão/fisiologia , Metabolismo Energético/fisiologia , Isótopos de Nitrogênio/metabolismo , Nitrogênio/metabolismo , Amônia/análise , Animais , Bactérias/metabolismo , Fracionamento Químico , Dieta/veterinária , Fezes/química , Feminino , Lactação , Leite/química , Proteínas do Leite/metabolismo , Rúmen/metabolismo , Rúmen/microbiologia , Amido/metabolismo
16.
J Environ Manage ; 166: 1-11, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26468602

RESUMO

Concerns over the negative environmental impact from livestock farming across Europe continue to make their mark resulting in new legislation and large research programs. However, despite a huge amount of published material and many available techniques, doubts over the success of national and European initiatives remain. Uptake of the more cost-effective and environmentally-friendly farming methods (such as dietary control, building design and good manure management) is already widespread but unlikely to be enough in itself to ensure that current environmental targets are fully met. Some of the abatement options available for intensive pig and poultry farming are brought together under the European IPPC/IED directive where they are listed as Best Available Techniques (BAT). This list is far from complete and other methods including many treatment options are currently excluded. However, the efficacies of many of the current BAT-listed options are modest, difficult to regulate and in some cases they may even be counterproductive with respect to other objectives ie pollution swapping. Evaluation of the existing and new BAT technologies is a key to a successful abatement of pollution from the sector and this in turn relies heavily on good measurement strategies. Consideration of the global effect of proposed techniques in the context of the whole farm will be essential for the development of a valid strategy.


Assuntos
Criação de Animais Domésticos/métodos , Poluição Ambiental , Gado/crescimento & desenvolvimento , Criação de Animais Domésticos/legislação & jurisprudência , Criação de Animais Domésticos/tendências , Animais , Poluição Ambiental/análise , Poluição Ambiental/legislação & jurisprudência , Europa (Continente) , Regulamentação Governamental
17.
J Anim Sci ; 93(11): 5367-77, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26641056

RESUMO

Tea saponin is considered a promising natural compound for reducing enteric methane emissions in ruminants. A trial was conducted to study the effect of this plant extract fed alone or in combination with nitrate on methane emissions, total tract digestive processes, and ruminal characteristics in cattle. The experiment was conducted as a 2 × 2 factorial design with 4 ruminally cannulated nonlactating dairy cows. Feed offer was restricted to 90% of voluntary intake and diets consisted of (DM basis): 1) control (CON; 50% hay and 50% pelleted concentrates), 2) CON with 0.5% tea saponin (TEA), 3) CON with 2.3% nitrate (NIT), and 4) CON with 0.5% tea saponin and 2.3% nitrate (TEA+NIT). Tea saponin and nitrate were included in pelleted concentrates. Diets contained similar amounts of CP (12.2%), starch (26.0%), and NDF (40.1%). Experimental periods lasted 5 wk including 2 wk of measurement (wk 4 and 5), during which intake was measured daily. In wk 4, daily methane emissions were quantified for 4 d using open circuit respiratory chambers. In wk 5, total tract digestibility, N balance, and urinary excretion of purine derivatives were determined from total feces and urine collected separately for 6 d. Ruminal fermentation products and protozoa concentration were analyzed from samples taken after morning feeding for 2 nonconsecutive days in wk 5. Tea saponin and nitrate supplementation decreased feed intake ( < 0.05), with an additive effect when fed in combination. Compared with CON, tea saponin did not modify methane emissions (g/kg DMI; > 0.05), whereas nitrate-containing diets (NIT and TEA+NIT) decreased methanogenesis by 28%, on average ( < 0.001). Total tract digestibility, N balance, and urinary excretion of purine derivatives were similar among diets. Ruminal fermentation products were not affected by tea saponin, whereas nitrate-containing diets increased acetate proportion and decreased butyrate proportion and ammonia concentration ( < 0.05). Under the experimental conditions tested, we confirmed the antimethanogenic effect of nitrate, whereas tea saponin alone included in pelleted concentrates failed to decrease enteric methane emissions in nonlactating dairy cows.


Assuntos
Camellia sinensis/química , Bovinos , Metano/metabolismo , Rúmen/metabolismo , Saponinas/farmacologia , Amônia/metabolismo , Animais , Dieta/veterinária , Suplementos Nutricionais , Digestão/efeitos dos fármacos , Fezes , Feminino , Fermentação , Aditivos Alimentares , Nitratos/farmacologia , Rúmen/efeitos dos fármacos , Saponinas/química , Amido/metabolismo
18.
J Anim Sci ; 93(7): 3564-77, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26440025

RESUMO

The objective of this study was to test the effect of linseed oil and nitrate fed alone or in combination on methane (CH4) emissions and diet digestibility in cows. The experiment was conducted as a 2 × 2 factorial design using 4 multiparous nonlactating Holstein cows (initial BW 656 ± 31 kg). Each experimental period lasted 5 wk, with measures performed in the final 3 wk (wk 3 to 5). Diets given on a DM basis were 1) control (CON; 50% natural grassland hay and 50% concentrate), 2) CON with 4% linseed oil (LIN), 3) CON with 3% calcium nitrate (NIT), and 4) CON with 4% linseed oil plus 3% calcium nitrate (LIN+NIT). Diets were offered twice daily and were formulated to deliver similar amounts (DM basis) of CP (12.2%), starch (25.5%), and NDF (39.5%). Feed offer was restricted to 90% of voluntary intake (12.4 kg DMI/d). Total tract digestibility and N balance were determined from total feces and urine collected separately for 6 d during wk 4. Daily CH4 emissions were quantified using open chambers for 4 d during wk 5. Rumen fermentation and microbial parameters were analyzed from samples taken before and 3 h after the morning feeding. Rumen concentrations of dissolved hydrogen (H2) were measured continuously up to 6 h after feeding using a H2 sensor. Compared with the CON diet linseed oil and nitrate decreased (P < 0.01) CH4 emissions (g/kg DMI) by 17 and 22%, respectively, when fed alone and by 32% when combined. The LIN diet reduced CH4 production throughout the day, increased (P = 0.02) propionate proportion, and decreased (P = 0.03) ruminal protozoa concentration compared with CON diet. The NIT diet strongly reduced CH4 production 3 h after feeding, with a simultaneous increase in rumen dissolved H2 concentration, suggesting that nitrate does not act only as an electron acceptor. As a combined effect, linseed plus nitrate also increased H2 concentrations in the rumen. Diets had no effect (P > 0.05) on total tract digestibility of nutrients, except linseed oil, which tended to reduce (P < 0.10) fiber digestibility. Nitrogen balance (% of N intake) was positive for all diets but retention was less (P = 0.03) with linseed oil. This study demonstrates an additive effect between nitrate and linseed oil for reducing methanogenesis in cows without altering diet digestibility.


Assuntos
Ração Animal/análise , Compostos de Cálcio/farmacologia , Bovinos/fisiologia , Óleo de Semente do Linho/farmacologia , Metano/metabolismo , Nitratos/farmacologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Compostos de Cálcio/administração & dosagem , Dieta/veterinária , Digestão/efeitos dos fármacos , Digestão/fisiologia , Quimioterapia Combinada , Feminino , Fermentação , Óleo de Semente do Linho/administração & dosagem , Nitratos/administração & dosagem , Rúmen/efeitos dos fármacos , Rúmen/metabolismo
19.
J Dairy Sci ; 98(7): 4829-40, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25958291

RESUMO

Milk odd- and branched-chain fatty acids (OBCFA) have been suggested as potential biomarkers for rumen function. The potential of milk OBCFA as a biomarker depends on whether their profile reflects the profile observed in the duodenum. The objective of this study was to evaluate whether the OBCFA profile in duodenum samples is reflected in plasma and milk. For this, 2 dairy cattle experiments were used. In experiment 1, 4 Holstein cows fitted with rumen and proximal duodenum cannulas were used in a 4×4 Latin square design. The treatments consisted of 2 nitrogen levels (143 vs. 110g of crude protein/kg of dry matter for high and low N, respectively) combined with either 1 of the 2 energy sources (i.e., starch from barley, corn, and wheat or fiber from soybean hulls and dehydrated beet pulp). In experiment 2, 4 Holstein cows fitted with rumen and proximal duodenum cannulas were used in a 3×3 Latin square design, with the treatments consisting of 3 diets: (1) RNB-, a diet with a crude protein content of 122g/kg of dry matter, predicted to provide protein digested in the small intestine according to the requirement of the animals, but with a shortage of rumen degradable protein; (2) RNB- to which 6g/d of niacin was added through inclusion in the mineral and vitamin premix, and (3) RNB- to which urea was added to balance rumen degradable N supply resulting in a CP content of 156g/kg of dry matter. In both experiments, samples of duodenal digesta, plasma, and milk were collected and analyzed for fatty acids. Additionally, lipids in plasma samples were separated in lipid classes and analyzed for fatty acids. The OBCFA profile in milk was enriched in 15:0, iso-17:0, anteiso-17:0, and cis-9-17:1 as compared with duodenal samples, and milk secretions even exceeded duodenal flows, which suggests occurrence of postruminal synthesis, such as de novo synthesis, desaturation, and elongation. The postruminal modification of the OBCFA profile might hamper the application of OBCFA as diagnostic tools of rumen function.


Assuntos
Bovinos/metabolismo , Duodeno/metabolismo , Ácidos Graxos/metabolismo , Leite/química , Nitrogênio/metabolismo , Rúmen/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Duodeno/efeitos dos fármacos , Ácidos Graxos/sangue , Feminino , Leite/efeitos dos fármacos , Nitrogênio/administração & dosagem , Rúmen/efeitos dos fármacos
20.
J Anim Sci ; 93(1): 334-47, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25568379

RESUMO

The objective of this work was to study nutritional strategies for decreasing methane production by ruminants fed tropical diets, combining in vitro and in vivo methods. The in vitro approach was used to evaluate the dose effect of condensed tannins (CT) contained in leaves of Gliricidia sepium, Leucaena leucocephala, and Manihot esculenta (39, 75, and 92 g CT/kg DM, respectively) on methane production and ruminal fermentation characteristics. Tannin-rich plants (TRP) were incubated for 24 h alone or mixed with a natural grassland hay based on Dichanthium spp. (control plant), so that proportions of TRP were 0, 0.25, 0.5, 0.75, and 1.0. Methane production, VFA concentration, and fermented OM decreased with increased proportions of TRP. Numerical differences on methane production and VFA concentration among TRP sources may be due to differences in their CT content, with greater effects for L. leucocephala and M. esculenta than for G. sepium. Independently of TRP, the response to increasing doses of CT was linear for methane production but quadratic for VFA concentration. As a result, at moderate tannin dose, methane decreased more than VFA. The in vivo trial was conducted to investigate the effect of TRP on different ruminal microbial populations. To this end, 8 rumen-cannulated sheep from 2 breeds (Texel and Blackbelly) were used in two 4 × 4 Latin square designs. Diets were fed ad libitum and were composed of the same feeds used for the in vitro trial: control plant alone or combined with pellets made from TRP leaves at 44% of the diet DM. Compared to TRP, concentration of Ruminococcus flavefaciens was greater for the control diet and concentration of Ruminococcus albus was least for the control diet. The methanogen population was greater for Texel than for Blackbelly. By contrast, TRP-containing diets did not affect protozoa or Fibrobacter succinogenes numbers. Hence, TRP showed potential for mitigating methane production by ruminants. These findings suggest that TRP fed as pellets could be used to decrease methane production.


Assuntos
Ração Animal/análise , Folhas de Planta/química , Rúmen/metabolismo , Rúmen/microbiologia , Ovinos/fisiologia , Taninos/química , Fenômenos Fisiológicos da Nutrição Animal , Animais , Reatores Biológicos , Dieta/veterinária , Fermentação , Metano/metabolismo , Taninos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA