Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Sleep Res ; : e14140, 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38221756

RESUMO

Acute caffeine intake affects brain and cardiovascular physiology, yet the concentration-effect relationships on the electroencephalogram and cardiac autonomic activity during sleep are poorly understood. To tackle this question, we simultaneously quantified the plasma caffeine concentration with ultra-high-performance liquid chromatography, as well as the electroencephalogram, heart rate and high-frequency (0.15-0.4 Hz) spectral power in heart rate variability, representing parasympathetic activity, with standard polysomnography during undisturbed human sleep. Twenty-one healthy young men in randomized, double-blind, crossover fashion, ingested 160 mg caffeine or placebo in a delayed, pulsatile-release caffeine formula at their habitual bedtime, and initiated a 4-hr sleep opportunity 4.5 hr later. The mean caffeine levels during sleep exhibited high individual variability between 0.2 and 18.4 µmol L-1 . Across the first two non-rapid-eye-movement (NREM)-rapid-eye-movement sleep cycles, electroencephalogram delta (0.75-2.5 Hz) activity and heart rate were reliably modulated by waking and sleep states. Caffeine dose-dependently reduced delta activity and heart rate, and increased high-frequency heart rate variability in NREM sleep when compared with placebo. The average reduction in heart rate equalled 3.24 ± 0.77 beats per minute. Non-linear statistical models suggest that caffeine levels above ~7.4 µmol L-1 decreased electroencephalogram delta activity, whereas concentrations above ~4.3 µmol L-1 and ~ 4.9 µmol L-1 , respectively, reduced heart rate and increased high-frequency heart rate variability. These findings provide quantitative concentration-effect relationships of caffeine, electroencephalogram delta power and cardiac autonomic activity, and suggest increased parasympathetic activity during sleep after intake of caffeine.

2.
Front Pharmacol ; 14: 1246892, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089057

RESUMO

Recently, the Amazonian plant medicine "ayahuasca"-containing the psychedelic compound N,N-dimethyltryptamine (DMT) and numerous ß-carboline alkaloids, such as harmine-has been suggested to exhibit beneficial effects in patients with affective and other mental health disorders. Although ayahuasca ingestion is considered safe, its pharmacokinetics/pharmacodynamics and tolerability profile pose some challenges and may limit the clinical applicability in vulnerable patient populations. While overdosing and the admixture of intolerable plant constituents may explain some of the common adverse reactions, the peroral route of administration may represent another relevant source of gastro-intestinal intolerabilities and unpredictable pharmacokinetics across users. To overcome these challenges, the present work aimed at creating ayahuasca-analogue formulations with improved pharmacokinetics and tolerability profiles. To this end, we developed peroral formulas and compared them with parenteral formulas specifically designed to circumvent the gastro-intestinal tract. In more detail, peroral administration of a capsule (containing purified DMT and harmine) was tested against a combined administration of an oromucosal harmine tablet and an intranasal DMT spray at two dose levels in an open-label within-subject study in 10 healthy male subjects. Pharmacokinetic and pharmacodynamic profiles were assessed by means of continuous blood sampling, vital sign monitoring, and psychometric assessments. Common side effects induced by traditional herbal ayahuasca such as nausea, vomiting, and diarrhea were significantly attenuated by our DMT/harmine formulations. While all preparations were well tolerated, the combined buccal/intranasal administration of harmine and DMT yielded substantially improved pharmacokinetic profiles, indicated by significantly reduced variations in systemic exposure. In conclusion, the combined buccal/intranasal administration of harmine and DMT is an innovative approach that may pave the way towards a safe, rapid-acting, and patient-oriented administration of DMT/harmine for the treatment of affective disorders. Clinical Trial Registration: clinicaltrials.gov, identifier NCT04716335.

3.
J Psychopharmacol ; 37(9): 942-944, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37401623

RESUMO

Gamma-hydroxybutyrate (GHB, clinically administrated as sodium oxybate) is a GABA-B/GHB receptor agonist inducing prosexual effects and progesterone secretion in humans. As the neuropeptide kisspeptin has well-established roles in regulating sexual behavior and as it was also associated with GABA-B receptor and progesterone function, we investigated the effect of two GHB doses (20 and 35 mg/kg p.o.) on plasma kisspeptin levels in 30 healthy male volunteers, using a double-blind, randomized, placebo-controlled cross-over design. We found no significant alterations of kisspeptin levels after GHB administration compared to placebo. In conclusion, plasma kisspeptin levels are not related to the prosexual effects of GHB.


Assuntos
Oxibato de Sódio , Humanos , Masculino , Oxibato de Sódio/farmacologia , Kisspeptinas/farmacologia , Progesterona/farmacologia , Comportamento Sexual , Voluntários
4.
Sci Rep ; 13(1): 8983, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268859

RESUMO

Gamma-hydroxybutyrate (GHB) remains a challenging clinical/forensic toxicology drug. Its rapid elimination to endogenous levels mainly causes this. Especially in drug-facilitated sexual assaults, sample collection often occurs later than the detection window for GHB. We aimed to investigate new GHB conjugates with amino acids (AA), fatty acids, and its organic acid metabolites for their suitability as ingestion/application markers in urine following controlled GHB administration to humans. We used LC-MS/MS for validated quantification of human urine samples collected within two randomized, double-blinded, placebo-controlled crossover studies (GHB 50 mg/kg, 79 participants) at approximately 4.5, 8, 11, and 28 h after intake. We found significant differences (placebo vs. GHB) for all but two analytes at 4.5 h. Eleven hours post GHB administration, GHB, GHB-AAs, 3,4-dihydroxybutyric acid, and glycolic acid still showed significantly higher concentrations; at 28 h only GHB-glycine. Three different discrimination strategies were evaluated: (a) GHB-glycine cut-off concentration (1 µg/mL), (b) metabolite ratios of GHB-glycine/GHB (2.5), and (c) elevation threshold between two urine samples (> 5). Sensitivities were 0.1, 0.3, or 0.5, respectively. Only GHB-glycine showed prolonged detection over GHB, mainly when compared to a second time- and subject-matched urine sample (strategy c).


Assuntos
Oxibato de Sódio , Humanos , Aminoácidos , Carnitina , Cromatografia Líquida , Espectrometria de Massas em Tandem , Glicina , Detecção do Abuso de Substâncias , Hidroxibutiratos
5.
J Sleep Res ; 32(4): e13866, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36869598

RESUMO

Clinical guidelines recommend sodium oxybate (SXB; the sodium salt of γ-hydroxybutyrate) for the treatment of disturbed sleep and excessive daytime sleepiness in narcolepsy, yet the underlying mode of action is elusive. In a randomised controlled trial in 20 healthy volunteers, we aimed at establishing neurochemical changes in the anterior cingulate cortex (ACC) following SXB-enhanced sleep. The ACC is a core neural hub regulating vigilance in humans. At 2:30 a.m., we administered in a double-blind cross-over manner an oral dose of 50 mg/kg SXB or placebo, to enhance electroencephalography-defined sleep intensity in the second half of nocturnal sleep (11:00 p.m. to 7:00 a.m.). Upon scheduled awakening, we assessed subjective sleepiness, tiredness and mood and measured two-dimensional, J-resolved, point-resolved magnetic resonance spectroscopy (PRESS) localisation at 3-Tesla field strength. Following brain scanning, we used validated tools to quantify psychomotor vigilance test (PVT) performance and executive functioning. We analysed the data with independent t tests, false discovery rate (FDR) corrected for multiple comparisons. The morning glutamate signal (at 8:30 a.m.) in the ACC was specifically increased after SXB-enhanced sleep in all participants in whom good-quality spectroscopy data were available (n = 16; pFDR < 0.002). Further, global vigilance (10th-90th inter-percentile range on the PVT) was improved (pFDR < 0.04) and median PVT response time was shorter (pFDR < 0.04) compared to placebo. The data indicate that elevated glutamate in the ACC could provide a neurochemical mechanism underlying SXB's pro-vigilant efficacy in disorders of hypersomnolence.


Assuntos
Distúrbios do Sono por Sonolência Excessiva , Narcolepsia , Oxibato de Sódio , Humanos , Oxibato de Sódio/farmacologia , Oxibato de Sódio/uso terapêutico , Ácido Glutâmico , Giro do Cíngulo/diagnóstico por imagem , Narcolepsia/tratamento farmacológico , Espectroscopia de Ressonância Magnética
6.
Cereb Cortex ; 33(12): 8046-8055, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36967111

RESUMO

Sodium oxybate (γ-hydroxybutyrate, GHB) is an endogenous GHB/GABAB receptor agonist, clinically used to promote slow-wave sleep and reduce next-day sleepiness in disorders such as narcolepsy and fibromyalgia. The neurobiological signature of these unique therapeutic effects remains elusive. Promising current neuropsychopharmacological approaches to understand the neural underpinnings of specific drug effects address cerebral resting-state functional connectivity (rsFC) patterns and neurometabolic alterations. Hence, we performed a placebo-controlled, double-blind, randomized, cross-over pharmacological magnetic resonance imaging study with a nocturnal administration of GHB, combined with magnetic resonance spectroscopy of GABA and glutamate in the anterior cingulate cortex (ACC). In sum, 16 healthy male volunteers received 50 mg/kg GHB p.o. or placebo at 02:30 a.m. to maximize deep sleep enhancement and multi-modal brain imaging was performed at 09:00 a.m. of the following morning. Independent component analysis of whole-brain rsFC revealed a significant increase of rsFC between the salience network (SN) and the right central executive network (rCEN) after GHB intake compared with placebo. This SN-rCEN coupling was significantly associated with changes in GABA levels in the ACC (pall < 0.05). The observed neural pattern is compatible with a functional switch to a more extrinsic brain state, which may serve as a neurobiological signature of the wake-promoting effects of GHB.


Assuntos
Oxibato de Sódio , Humanos , Masculino , Oxibato de Sódio/farmacologia , Giro do Cíngulo/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Vigília , Ácido gama-Aminobutírico/farmacologia
7.
Pharmacopsychiatry ; 56(2): 44-50, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36384232

RESUMO

Drug repurposing is a strategy to identify new indications for already approved drugs. A recent successful example in psychiatry is ketamine, an anesthetic drug developed in the 1960s, now approved and clinically used as a fast-acting antidepressant. Here, we describe the potential of dexmedetomidine as a psychopharmacological repurposing candidate. This α2-adrenoceptor agonist is approved in the US and Europe for procedural sedation in intensive care. It has shown fast-acting inhibitory effects on perioperative stress-related pathologies, including psychomotor agitation, hyperalgesia, and neuroinflammatory overdrive, proving potentially useful in clinical psychiatry. We offer an overview of the pharmacological profile and effects of dexmedetomidine with potential utility for the treatment of neuropsychiatric symptoms. Dexmedetomidine exerts fast-acting and robust sedation, anxiolytic, analgesic, sleep-modulating, and anti-inflammatory effects. Moreover, the drug prevents postoperative agitation and delirium, possibly via neuroprotective mechanisms. While evidence in animals and humans supports these properties, larger controlled trials in clinical samples are generally scarce, and systematic studies with psychiatric patients do not exist. In conclusion, dexmedetomidine is a promising candidate for an experimental treatment targeting stress-related pathologies common in neuropsychiatric disorders such as depression, anxiety disorders, and posttraumatic stress disorder. First small proof-of-concept studies and then larger controlled clinical trials are warranted in psychiatric populations to test the feasibility and efficacy of dexmedetomidine in these conditions.


Assuntos
Ansiolíticos , Dexmedetomidina , Psiquiatria , Humanos , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Agonistas de Receptores Adrenérgicos alfa 2/uso terapêutico , Analgésicos , Ansiolíticos/farmacologia , Ansiolíticos/uso terapêutico , Dexmedetomidina/farmacologia , Dexmedetomidina/uso terapêutico , Reposicionamento de Medicamentos , Hipnóticos e Sedativos/farmacologia , Hipnóticos e Sedativos/uso terapêutico
8.
Front Psychiatry ; 14: 1302559, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38264636

RESUMO

Background: There is growing scientific evidence for the therapeutic benefits of the Amazonian plant-based psychedelic "ayahuasca" for neuropsychiatric disorders such as depression and anxiety. However, there are certain challenges when incorporating botanical ayahuasca into biomedical research and clinical therapy environments. Formulations inspired by ayahuasca, which contain specific and standardized active components, are a potential remedy. Methods: We investigated subjective acute and persisting effects of a novel formulation containing the reversible monoamine oxidase inhibitor harmine (orodispersible tablet containing 100 mg MAO-I) and N,N-dimethyltryptamine (incremental intranasal dosing of up to 100 mg DMT), compared with two other conditions, namely harmine alone and placebo, in a crossover RCT in 31 healthy male subjects. Results: DMT + harmine, but not harmine alone, induced a psychedelic experience assessed with the 5D-ASC rating scale [global score: F(2,60) = 80.21, p < 0.001] and acute experience sampling items over time, characterized by psychological insights [PIQ, F(2,58.5) = 28.514, p < 0.001], emotional breakthroughs [EBI, F(2,60) = 26.509, p < 0.001], and low scores on the challenging experience questionnaire [CEQ, F(2,60) = 12.84, p < 0.001]. Participants attributed personal and spiritual significance to the experience (GSR) with mainly positive persisting effects (PEQ) at 1- and 4-months follow-up. Acute drug effects correlated positively with persisting effects. We found no changes in trait measures of personality, psychological flexibility, or general well-being, and no increases in psychopathology (SCL-90-R) were reported. Discussion and Conclusion: Our results suggest that the experience induced by the standardized DMT + harmine formulation induces a phenomenologically rich psychedelic experience, demonstrates good psychological safety and tolerability, is well tolerated, and induces beneficial psychological processes that could possibly support psychotherapy. Further studies are required to investigate the psychotherapeutic potential in patients.

9.
Sci Rep ; 11(1): 19734, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611208

RESUMO

Sleep inertia is a disabling state of grogginess and impaired vigilance immediately upon awakening. The adenosine receptor antagonist, caffeine, is widely used to reduce sleep inertia symptoms, yet the initial, most severe impairments are hardly alleviated by post-awakening caffeine intake. To ameliorate this disabling state more potently, we developed an innovative, delayed, pulsatile-release caffeine formulation targeting an efficacious dose briefly before planned awakening. We comprehensively tested this formulation in two separate studies. First, we established the in vivo caffeine release profile in 10 young men. Subsequently, we investigated in placebo-controlled, double-blind, cross-over fashion the formulation's ability to improve sleep inertia in 22 sleep-restricted volunteers. Following oral administration of 160 mg caffeine at 22:30, we kept volunteers awake until 03:00, to increase sleep inertia symptoms upon scheduled awakening at 07:00. Immediately upon awakening, we quantified subjective state, psychomotor vigilance, cognitive performance, and followed the evolution of the cortisol awakening response. We also recorded standard polysomnography during nocturnal sleep and a 1-h nap opportunity at 08:00. Compared to placebo, the engineered caffeine formula accelerated the reaction time on the psychomotor vigilance task, increased positive and reduced negative affect scores, improved sleep inertia ratings, prolonged the cortisol awakening response, and delayed nap sleep latency one hour after scheduled awakening. Based on these findings, we conclude that this novel, pulsatile-release caffeine formulation facilitates the sleep-to-wake transition in sleep-restricted healthy adults. We propose that individuals suffering from disabling sleep inertia may benefit from this innovative approach.Trials registration: NCT04975360.


Assuntos
Cafeína/administração & dosagem , Sono/efeitos dos fármacos , Vigília , Adulto , Cafeína/farmacocinética , Emoções/efeitos dos fármacos , Feminino , Voluntários Saudáveis , Humanos , Hidrocortisona/administração & dosagem , Masculino , Polissonografia , Desempenho Psicomotor/efeitos dos fármacos , Fases do Sono , Fatores de Tempo , Vigília/efeitos dos fármacos , Adulto Jovem
10.
Metabolites ; 11(3)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809281

RESUMO

In forensic toxicology, gamma-hydroxybutyrate (GHB) still represents one of the most challenging drugs of abuse in terms of analytical detection and interpretation. Given its rapid elimination, the detection window of GHB in common matrices is short (maximum 12 h in urine). Additionally, the differentiation from naturally occurring endogenous GHB, is challenging. Thus, novel biomarkers to extend the detection window of GHB are urgently needed. The present study aimed at searching new potential biomarkers of GHB use by means of mass spectrometry (MS) metabolomic profiling in serum (up to 16.5 h) and urine samples (up to 8 h after intake) collected during a placebo-controlled crossover study in healthy men. MS data acquired by different analytical methods (reversed phase and hydrophilic interaction liquid chromatography; positive and negative electrospray ionization each) were filtered for significantly changed features applying univariate and mixed-effect model statistics. Complementary to a former study, conjugates of GHB with glycine, glutamate, taurine, carnitine and pentose (ribose) were identified in urine, with particularly GHB-pentose being promising for longer detection. None of the conjugates were detectable in serum. Therein, mainly energy metabolic substrates were identified, which may be useful for more detailed interpretation of underlying pathways but are too unspecific as biomarkers.

11.
Neuropsychopharmacology ; 44(11): 1985-1993, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30959514

RESUMO

Gamma-hydroxybutyrate (GHB) is an endogenous GHB/GABAB receptor agonist, which has demonstrated potency in consolidating sleep and reducing excessive daytime sleepiness in narcolepsy. Little is known whether GHB's efficacy reflects the promotion of physiological sleep mechanisms and no study has investigated its sleep consolidating effects under low sleep pressure. GHB (50 mg/kg p.o.) and placebo were administered in 20 young male volunteers at 2:30 a.m., the time when GHB is typically given in narcolepsy, in a randomized, double-blinded, crossover manner. Drug effects on sleep architecture and electroencephalographic (EEG) sleep spectra were analyzed. In addition, current source density (CSD) analysis was employed to identify the effects of GHB on the brain electrical sources of neuronal oscillations. Moreover, lagged-phase synchronization (LPS) analysis was applied to quantify the functional connectivity among sleep-relevant brain regions. GHB prolonged slow-wave sleep (stage N3) at the cost of rapid eye movement (REM) sleep. Furthermore, it enhanced delta-theta (0.5-8 Hz) activity in NREM and REM sleep, while reducing activity in the spindle frequency range (13-15 Hz) in sleep stage N2. The increase in delta power predominated in medial prefrontal cortex, parahippocampal and fusiform gyri, and posterior cingulate cortex. Theta power was particularly increased in the prefrontal cortex and both temporal poles. Moreover, the brain areas that showed increased theta power after GHB also exhibited increased lagged-phase synchronization among each other. Our study in healthy men revealed distinct similarities between GHB-augmented sleep and physiologically augmented sleep as seen in recovery sleep after prolonged wakefulness. The promotion of the sleep neurophysiological mechanisms by GHB may thus provide a rationale for GHB-induced sleep and waking quality in neuropsychiatric disorders beyond narcolepsy.


Assuntos
Agonistas dos Receptores de GABA-B/farmacologia , Sono/efeitos dos fármacos , Oxibato de Sódio/farmacologia , Adulto , Estudos Cross-Over , Método Duplo-Cego , Eletroencefalografia , Voluntários Saudáveis , Humanos , Masculino , Adulto Jovem
12.
Eur Neuropsychopharmacol ; 29(4): 539-548, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30824339

RESUMO

Performance and conflict monitoring (PM and CM) represent two essential cognitive abilities, required to respond appropriately to demanding tasks. PM and CM can be investigated using event-related brain potentials (ERP) and associated neural oscillations. Namely, the error-related negativity (ERN) represents a correlate of PM, whereas the N2 component reflects the process of CM. Both ERPs originate in the anterior cingulate cortex (ACC) and PM specifically has been shown to be susceptible to gamma-aminobutyric acid (GABA) A receptor activation. Contrarily, the specific effects of GABAB receptor (GABABR) stimulation on PM and CM are unknown. Thus, the effects of gamma-hydroxybutyrate (GHB; 20 and 35 mg/kg), a predominant GABABR agonist, on behavioral and electrophysiological correlates of PM and CM were here assessed in 15 healthy male volunteers, using the Eriksen-Flanker paradigm in a randomized, double-blind, placebo-controlled, cross-over study. Electroencephalographic (EEG) data were analyzed in the time and time-frequency domains. GHB prolonged reaction times, without affecting error rates or post-error slowing. Moreover, GHB decreased ERN amplitudes and associated neural oscillations in the theta/alpha1 range. Similarly, neural oscillations associated with the N2 were reduced in the theta/alpha1 range, while N2 amplitude was conversely increased. Hence, GHB shows a dissociating effect on electrophysiological correlates of PM and CM. Reduced ERN likely derives from a GABABR-mediated increase in dopaminergic signaling, disrupting the generation of prediction errors, whereas an enhanced N2 suggests an increased susceptibility towards external stimuli. Conclusively, GHB is the first drug reported, thus far, to have opposite effects on PM and CM, underlined by its unique electrophysiological signature.


Assuntos
Cognição/fisiologia , Potenciais Evocados/efeitos dos fármacos , Oxibato de Sódio/farmacologia , Adolescente , Adulto , Ondas Encefálicas/efeitos dos fármacos , Estudos Cross-Over , Método Duplo-Cego , Eletroencefalografia , Agonistas GABAérgicos/farmacologia , Voluntários Saudáveis/psicologia , Humanos , Masculino , Desempenho Psicomotor/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Tempo de Reação/efeitos dos fármacos , Adulto Jovem
13.
Drug Test Anal ; 11(6): 813-823, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30548573

RESUMO

Gamma-hydroxybutyrate (GHB) is a short-chain fatty acid that occurs naturally in the mammalian brain and is prescribed as a medication against narcolepsy or used as a drug of abuse. Particularly, its use as a knock-out drug in cases of drug-facilitated crimes is of major importance in forensic toxicology. Because of its rapid metabolism and resulting narrow detection windows (<12 hours in urine), detection of GHB remains challenging. Thus, there is an urgent call for new markers to improve the reliable detection of GHB use. In the framework of a randomized, placebo-controlled, crossover study in 20 healthy male volunteers, urine samples obtained 4.5 hours post-administration were submitted to untargeted mass spectrometry [MS, quadrupole time of flight (QTOF)] analysis to identify possible new markers of GHB intake. MS data from four different analytical methods (reversed phase and hydrophilic interaction liquid chromatography; positive and negative electrospray ionization) were filtered for significantly changed features applying univariate and multivariate statistics. From the resulting 42 compounds of interest, 8 were finally identified including conjugates of GHB with carnitine, glutamate, and glycine as well as the endogenous compounds glycolate and succinylcarnitine. While GHB conjugates were only detectable in the GHB, but not in the placebo group, glycolate and succinylcarnitine were present in both groups albeit significantly increased through GHB intake. Untargeted metabolomics proved as a suitable tool for the non-hypothesis driven identification of new GHB markers. However, more studies on actual concentrations, detection windows, and stability will be necessary to assess the suitability of these markers for routine application.


Assuntos
Hidroxibutiratos/urina , Metabolômica/métodos , Adulto , Biomarcadores/metabolismo , Biomarcadores/urina , Cromatografia Líquida de Alta Pressão/métodos , Estudos Cross-Over , Humanos , Hidroxibutiratos/administração & dosagem , Hidroxibutiratos/metabolismo , Masculino , Efeito Placebo , Detecção do Abuso de Substâncias/métodos , Espectrometria de Massas em Tandem/métodos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA