Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6349, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491069

RESUMO

Wastewater treatment plants (WWTPs) are considered to be hotspots for the spread of antibiotic resistance genes (ARGs). We performed a metagenomic analysis of the raw wastewater, activated sludge and treated wastewater from two large WWTPs responsible for the treatment of urban wastewater in Moscow, Russia. In untreated wastewater, several hundred ARGs that could confer resistance to most commonly used classes of antibiotics were found. WWTPs employed a nitrification/denitrification or an anaerobic/anoxic/oxic process and enabled efficient removal of organic matter, nitrogen and phosphorus, as well as fecal microbiota. The resistome constituted about 0.05% of the whole metagenome, and after water treatment its share decreased by 3-4 times. The resistomes were dominated by ARGs encoding resistance to beta-lactams, macrolides, aminoglycosides, tetracyclines, quaternary ammonium compounds, and sulfonamides. ARGs for macrolides and tetracyclines were removed more efficiently than beta-lactamases, especially ampC, the most abundant ARG in the treated effluent. The removal efficiency of particular ARGs was impacted by the treatment technology. Metagenome-assembled genomes of multidrug-resistant strains were assembled both for the influent and the treated effluent. Ccomparison of resistomes from WWTPs in Moscow and around the world suggested that the abundance and content of ARGs depend on social, economic, medical, and environmental factors.


Assuntos
Águas Residuárias , Purificação da Água , Moscou , Metagenoma , Genes Bacterianos , Antibacterianos , Tetraciclinas , Macrolídeos
2.
Sci Rep ; 12(1): 3458, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236881

RESUMO

Microbial communities in wastewater treatment plants (WWTPs) play a key role in water purification. Microbial communities of activated sludge (AS) vary extensively based on plant operating technology, influent characteristics and WWTP capacity. In this study we performed 16S rRNA gene profiling of AS at nine large-scale WWTPs responsible for the treatment of municipal sewage from the city of Moscow, Russia. Two plants employed conventional aerobic process, one plant-nitrification/denitrification technology, and six plants were operated with the University of Cape Town (UCT) anaerobic/anoxic/oxic process. Microbial communities were impacted by the technology and dominated by the Proteobacteria, Bacteroidota and Actinobacteriota. WWTPs employing the UCT process enabled efficient removal of not only organic matter, but also nitrogen and phosphorus, consistently with the high content of ammonia-oxidizing Nitrosomonas sp. and phosphate-accumulating bacteria. The latter group was represented by Candidatus Accumulibacter, Tetrasphaera sp. and denitrifiers. Co-occurrence network analysis provided information on key hub microorganisms in AS, which may be targeted for manipulating the AS stability and performance. Comparison of AS communities from WWTPs in Moscow and worldwide revealed that Moscow samples clustered together indicating that influent characteristics, related to social, cultural and environmental factors, could be more important than a plant operating technology.


Assuntos
Microbiota , Purificação da Água , Bactérias , Reatores Biológicos , Desnitrificação/genética , Microbiota/genética , Moscou , Nitrogênio , RNA Ribossômico 16S/genética , Esgotos/microbiologia , Eliminação de Resíduos Líquidos , Águas Residuárias/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA