Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760566

RESUMO

CRISPR perturbation methods are limited in their ability to study non-coding elements and genetic interactions. In this study, we developed a system for bidirectional epigenetic editing, called CRISPRai, in which we apply activating (CRISPRa) and repressive (CRISPRi) perturbations to two loci simultaneously in the same cell. We developed CRISPRai Perturb-seq by coupling dual perturbation gRNA detection with single-cell RNA sequencing, enabling study of pooled perturbations in a mixed single-cell population. We applied this platform to study the genetic interaction between two hematopoietic lineage transcription factors, SPI1 and GATA1, and discovered novel characteristics of their co-regulation on downstream target genes, including differences in SPI1 and GATA1 occupancy at genes that are regulated through different modes. We also studied the regulatory landscape of IL2 (interleukin-2) in Jurkat T cells, primary T cells and chimeric antigen receptor (CAR) T cells and elucidated mechanisms of enhancer-mediated IL2 gene regulation. CRISPRai facilitates investigation of context-specific genetic interactions, provides new insights into gene regulation and will enable exploration of non-coding disease-associated variants.

2.
Nature ; 625(7996): 805-812, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38093011

RESUMO

CRISPR-enabled screening is a powerful tool for the discovery of genes that control T cell function and has nominated candidate targets for immunotherapies1-6. However, new approaches are required to probe specific nucleotide sequences within key genes. Systematic mutagenesis in primary human T cells could reveal alleles that tune specific phenotypes. DNA base editors are powerful tools for introducing targeted mutations with high efficiency7,8. Here we develop a large-scale base-editing mutagenesis platform with the goal of pinpointing nucleotides that encode amino acid residues that tune primary human T cell activation responses. We generated a library of around 117,000 single guide RNA molecules targeting base editors to protein-coding sites across 385 genes implicated in T cell function and systematically identified protein domains and specific amino acid residues that regulate T cell activation and cytokine production. We found a broad spectrum of alleles with variants encoding critical residues in proteins including PIK3CD, VAV1, LCP2, PLCG1 and DGKZ, including both gain-of-function and loss-of-function mutations. We validated the functional effects of many alleles and further demonstrated that base-editing hits could positively and negatively tune T cell cytotoxic function. Finally, higher-resolution screening using a base editor with relaxed protospacer-adjacent motif requirements9 (NG versus NGG) revealed specific structural domains and protein-protein interaction sites that can be targeted to tune T cell functions. Base-editing screens in primary immune cells thus provide biochemical insights with the potential to accelerate immunotherapy design.


Assuntos
Alelos , Edição de Genes , Mutagênese , Linfócitos T , Humanos , Aminoácidos/genética , Sistemas CRISPR-Cas/genética , Mutagênese/genética , RNA Guia de Sistemas CRISPR-Cas/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Ativação Linfocitária , Citocinas/biossíntese , Citocinas/metabolismo , Mutação com Ganho de Função , Mutação com Perda de Função
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA