RESUMO
Histopathologic studies report higher concentrations of multiple sclerosis white matter lesions in watershed areas of the brain, suggesting that areas with relatively lower oxygen levels may be more vulnerable to disease. However, it is unknown at what point in the disease course lesion predilection for watershed territories begins. Accordingly, we studied a cohort of people with newly diagnosed disease and asked whether (1) white matter lesions disproportionally localize to watershed-regions and (2) the degree of microstructural injury in watershed-lesions is more severe. Fifty-four participants, i.e. 38 newly diagnosed people with multiple sclerosis, clinically isolated syndrome or radiologically isolated syndrome, and 16 age- and sex-matched healthy controls underwent brain magnetic resonance imaging. T1-weighted and T2-weighted fluid-attenuated inversion recovery sequences, selective inversion recovery quantitative magnetisation transfer images, and the multi-compartment diffusion imaging with the spherical mean technique were acquired. We computed the macromolecular-to-free pool size ratio, and the apparent axonal volume fraction maps to indirectly estimate myelin and axonal integrity, respectively. We produced a flow territory atlas in each subject's native T2-weighted fluid-attenuated inversion recovery images using a T1-weighted magnetic resonance imaging template in the Montreal Neurological Institute 152 space. Lesion location relative to the watershed, non-watershed and mixed brain vascular territories was annotated. The same process was performed on the T2-weighted fluid-attenuated inversion recovery images of the healthy controls using 294 regions of interest. Generalized linear mixed models for continuous outcomes were used to assess differences in size, pool size ratio and axonal volume fraction between lesions/regions of interests (in healthy controls) situated in different vascular territories. In patients, we assessed 758 T2-lesions and 356 chronic black holes (cBHs). The watershed-territories had higher relative and absolute concentrations of T2-lesions (P≤0.041) and cBHs (P≤0.036) compared to either non-watershed- or mixed-zones. T2-lesions in watershed-areas also had lower pool size ratio relative to T2-lesions in either non-watershed- or mixed-zones (P = 0.039). These results retained significance in the sub-cohort of people without vascular comorbidities and when accounting for periventricular lesions. In healthy controls, axonal volume fraction was higher only in mixed-areas regions of interest compared to non-watershed-ones (P = 0.008). No differences in pool size ratio were seen. We provide in vivo evidence that there is an association between arterial vascularisation of the brain and multiple sclerosis-induced tissue injury as early as the time of disease diagnosis. Our findings underline the importance of oxygen delivery and healthy arterial vascularisation to prevent lesion formation and foster a better outcome in multiple sclerosis.
RESUMO
Occipital nerve decompression is effective in reducing headache symptoms in select patients with migraine and occipital neuralgia. Eligibility for surgery relies on subjective symptoms and responses to nerve blocks and Onabotulinum toxin A (Botox) injections. No validated objective method exists for detecting occipital headache pathologies. The purpose of the study is to explore the potential of high-resolution Magnetic Resolution Imaging (MRI) in identifying greater occipital nerve (GON) pathologies in chronic headache patients. The MRI protocol included three sequences targeting fat-suppressed fluid-sensitive T2-weighted signals. Visualization of the GON involved generating 2-D image slices with sequential rotation to track the nerve course. Twelve patients underwent pre-surgical MRI assessment. MRI identified four main pathologies that were validated against intra-operative examination: GON entanglement by the occipital artery, increased nerve thickness and hyperintensity suggesting inflammation compared to the non-symptomatic contralateral side, early GON branching with rejoining at a distal point, and a connection between the GON and the lesser occipital nerve. MRI possesses the ability to visualize the GON and identify suspected trigger points associated with headache symptoms. This case series highlights MRI's potential to provide objective evidence of nerve pathology. Further research is warranted to establish MRI as a gold standard for diagnosing extracranial contributors in headaches.
Assuntos
Descompressão Cirúrgica , Cefaleia , Imageamento por Ressonância Magnética , Nervos Espinhais , Humanos , Imageamento por Ressonância Magnética/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Cefaleia/diagnóstico por imagem , Descompressão Cirúrgica/métodos , Nervos Espinhais/diagnóstico por imagem , Nervos Espinhais/cirurgia , Idoso , Cuidados Pré-OperatóriosRESUMO
PURPOSE: Multi-echo, multi-contrast methods are increasingly used in dynamic imaging studies to simultaneously quantify R2∗ and R2. To overcome the computational challenges associated with nonlinear least squares (NLSQ) fitting, we propose a generalized linear least squares (LLSQ) solution to rapidly fit R2∗ and R2. METHODS: Spin- and gradient-echo (SAGE) data were simulated across T2∗ and T2 values at high (200) and low (20) SNR. Full (four-parameter) and reduced (three-parameter) parameter fits were implemented and compared with both LLSQ and NLSQ fitting. Fit data were compared to ground truth using concordance correlation coefficient (CCC) and coefficient of variation (CV). In vivo SAGE perfusion data were acquired in 20 subjects with relapsing-remitting multiple sclerosis. LLSQ R2∗ and R2, as well as cerebral blood volume (CBV), were compared with the standard NLSQ approach. RESULTS: Across all fitting methods, T2∗ was well-fit at high (CCC = 1, CV = 0) and low (CCC ≥ 0.87, CV ≤ 0.08) SNR. Except for short T2∗ values (5-15 ms), T2 was well-fit at high (CCC = 1, CV = 0) and low (CCC ≥ 0.99, CV ≤ 0.03) SNR. In vivo, LLSQ R2∗ and R2 estimates were similar to NLSQ, and there were no differences in R2∗ across fitting methods at high SNR. However, there were some differences at low SNR and for R2 at high and low SNR. In vivo NLSQ and LLSQ three parameter fits performed similarly, as did NLSQ and LLSQ four-parameter fits. LLSQ CBV nearly matched the standard NLSQ method for R2∗- (0.97 ratio) and R2-CBV (0.98 ratio). Voxel-wise whole-brain fitting was faster for LLSQ (3-4 min) than NLSQ (16-18 h). CONCLUSIONS: LLSQ reliably fit for R2∗ and R2 in simulated and in vivo data. Use of LLSQ methods reduced the computational demand, enabling rapid estimation of R2∗ and R2.
Assuntos
Encéfalo , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Masculino , Feminino , Adulto , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Análise dos Mínimos Quadrados , Razão Sinal-Ruído , Simulação por Computador , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Reprodutibilidade dos Testes , Circulação Cerebrovascular/fisiologia , Interpretação de Imagem Assistida por Computador/métodosRESUMO
BACKGROUND: Patients with polyneuropathies typically have demyelination and/or axonal degeneration in peripheral nerves. Currently, there is a lack of imaging biomarkers to track the changes in these pathologies. PURPOSE: To develop and evaluate the reliability of a multiparametric quantitative magnetic resonance imaging (qMRI) method of peripheral nerves in the leg. STUDY TYPE: Prospective. SUBJECTS: Seventeen healthy volunteers (36.2 ± 13.8 years old, 9 males) with 10 of them scanned twice for test-retest. FIELD STRENGTH/SEQUENCE: 3 T, three-dimensional gradient echo and diffusion tensor imaging. ASSESSMENT: A qMRI protocol and processing pipeline was established for quantifying the following nerve parameters that are sensitive to myelin and axonal pathologies: magnetization transfer (MT) ratio (MTR), MT saturation index (MTsat), T2 *, T1 , proton density (PD), fractional anisotropy (FA), and mean/axial/radial diffusivities (MD, AD, and RD). The qMRI protocol also measures the volume of nerve fascicles (fVOL) and the fat fraction (FF) of muscles. STATISTICAL TESTS: The intersession reproducibility and inter-rater reliability of each qMRI parameter were assessed by Bland-Altman analysis and intraclass correlation coefficient (ICC). Pairwise Pearson correlation analyses were performed to investigate the intrinsic association between qMRI parameters. Distal-to-proximal variations were evaluated by paired t-tests with Bonferroni-Holm multiple comparison corrections. P < 0.05 was considered statistically significant. RESULTS: The MTR, MTsat, T2 *, T1 , PD, FA, AD, and fVOL of the sciatic and tibial nerves, and the FF of leg muscles, had an overall good-to-excellent test-retest agreement (ICC varying from 0.78 to 0.99). All the qMRI parameters had good-to-excellent inter-rater reliability (ICC > 0.80). The data demonstrated a pattern of distal-to-proximal changes of an increased nerve MTsat and FA, and a decreased nerve T1 , PD, MD, and RD, as well as a significantly increased muscle FF. DATA CONCLUSION: The proposed multiparametric qMRI method of the peripheral nerves is highly reproducible and provided healthy control data which will be used in developing monitoring biomarkers in patients with polyneuropathies. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 2.
Assuntos
Imagem de Tensor de Difusão , Polineuropatias , Masculino , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Imagem de Tensor de Difusão/métodos , Reprodutibilidade dos Testes , Estudos Prospectivos , Perna (Membro)/diagnóstico por imagem , Nervos Periféricos/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , BiomarcadoresRESUMO
PURPOSE: K trans $$ {K}^{\mathrm{trans}} $$ has often been proposed as a quantitative imaging biomarker for diagnosis, prognosis, and treatment response assessment for various tumors. None of the many software tools for K trans $$ {K}^{\mathrm{trans}} $$ quantification are standardized. The ISMRM Open Science Initiative for Perfusion Imaging-Dynamic Contrast-Enhanced (OSIPI-DCE) challenge was designed to benchmark methods to better help the efforts to standardize K trans $$ {K}^{\mathrm{trans}} $$ measurement. METHODS: A framework was created to evaluate K trans $$ {K}^{\mathrm{trans}} $$ values produced by DCE-MRI analysis pipelines to enable benchmarking. The perfusion MRI community was invited to apply their pipelines for K trans $$ {K}^{\mathrm{trans}} $$ quantification in glioblastoma from clinical and synthetic patients. Submissions were required to include the entrants' K trans $$ {K}^{\mathrm{trans}} $$ values, the applied software, and a standard operating procedure. These were evaluated using the proposed OSIP I gold $$ \mathrm{OSIP}{\mathrm{I}}_{\mathrm{gold}} $$ score defined with accuracy, repeatability, and reproducibility components. RESULTS: Across the 10 received submissions, the OSIP I gold $$ \mathrm{OSIP}{\mathrm{I}}_{\mathrm{gold}} $$ score ranged from 28% to 78% with a 59% median. The accuracy, repeatability, and reproducibility scores ranged from 0.54 to 0.92, 0.64 to 0.86, and 0.65 to 1.00, respectively (0-1 = lowest-highest). Manual arterial input function selection markedly affected the reproducibility and showed greater variability in K trans $$ {K}^{\mathrm{trans}} $$ analysis than automated methods. Furthermore, provision of a detailed standard operating procedure was critical for higher reproducibility. CONCLUSIONS: This study reports results from the OSIPI-DCE challenge and highlights the high inter-software variability within K trans $$ {K}^{\mathrm{trans}} $$ estimation, providing a framework for ongoing benchmarking against the scores presented. Through this challenge, the participating teams were ranked based on the performance of their software tools in the particular setting of this challenge. In a real-world clinical setting, many of these tools may perform differently with different benchmarking methodology.
Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética , Humanos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Software , AlgoritmosRESUMO
Aim: Repair of peripheral nerves is recommended following transection. Systematic evaluation of longitudinal recovery in injury models is needed to improve patient management. Gompertz function provided straightforward interpretation and prediction of recovery outcomes. Materials & methods: Behavioural sciatic function index, measured 3 days post injury, and weekly for 12 weeks following full nerve transection and repair (n = 6) as well as crush injuries (n = 6). Results: Gompertz parametrization provided early classification between types of traumatic peripheral nerve injuries following surgical repair. Results distinguished injury nerves (A: p < 0.01; Ti: p < 0.05; Ic: p < 0.05 and outcome: p < 0.01). Early prognostication of outcomes (crush: 5.5 ± 0.3 and cut/repair: 8 ± 1 weeks) preceded current methods. Conclusion: Our findings identify injury type, state of recovery and early prognostication of outcome.
Assuntos
Traumatismos dos Nervos Periféricos , Humanos , Traumatismos dos Nervos Periféricos/terapia , Nervo Isquiático , Regeneração Nervosa/fisiologia , Recuperação de Função Fisiológica/fisiologiaRESUMO
Distal sensory polyneuropathy (DSP) is characterised by length-dependent, sensory-predominant symptoms and signs, including potentially disabling symmetric chronic pain, tingling and poor balance. Some patients also have or develop dysautonomia or motor involvement depending on whether large myelinated or small fibres are predominantly affected. Although highly prevalent, diagnosis and management can be challenging. While classic diabetes and toxic causes are well-recognised, there are increasingly diverse associations, including with dysimmune, rheumatological and neurodegenerative conditions. Approximately half of cases are initially considered idiopathic despite thorough evaluation, but often, the causes emerge later as new symptoms develop or testing advances, for instance with genetic approaches. Improving and standardising DSP metrics, as already accomplished for motor neuropathies, would permit in-clinic longitudinal tracking of natural history and treatment responses. Standardising phenotyping could advance research and facilitate trials of potential therapies, which lag so far. This review updates on recent advances and summarises current evidence for specific treatments.
Assuntos
Polineuropatias , Humanos , Polineuropatias/diagnóstico , Polineuropatias/terapiaRESUMO
PURPOSE: Quantitative magnetization transfer (QMT) using selective inversion recovery (SIR) can quantify the macromolecular-to-free proton pool size ratio (PSR), which has been shown to relate closely with myelin content. Currently clinical applications of SIR have been hampered by long scan times. In this work, the acceleration of SIR-QMT using CS-SENSE (compressed sensing SENSE) was systematically studied. THEORY AND METHODS: Phantoms of varied concentrations of bovine serum albumin and human scans were first conducted to evaluate the SNR, precision of SIR-QMT parameters, and scan time. Based on these results, an optimized CS-SENSE factor of 8 was determined and the test-retest repeatability was further investigated. RESULTS: A whole-brain SIR imaging of 6 min can be achieved. Bland-Altman analyses indicated excellent agreement between the test and retest sessions with a difference in mean PSR of 0.06% (and a difference in mean R1f of -0.001 s-1 ). In addition, the assessment of the intraclass correlation coefficient (ICC) revealed high reliability in nearly all the white matter and gray matter regions. In white matter regions, the ICC was 0.93 (95% confidence interval [CI]: 0.88-0.96, p < 0.001) for PSR, and 0.90 (95% CI: 0.83-0.94, p < 0.001) for R1f . In gray matter, ICC was 0.84 (95% CI: 0.66-0.93, p < 0.001) in PSR, and 0.98 (95% CI: 0.95-0.99, p < 0.001) for R1f . The method also showed excellent capability to detect focal lesions in multiple sclerosis. CONCLUSION: Rapid, reliable, and sensitive whole-brain SIR imaging can be achieved using CS-SENSE, which is expected to significantly promote widespread clinical translation.
Assuntos
Bainha de Mielina , Substância Branca , Humanos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologiaRESUMO
OBJECTIVE: Charcot-Marie-Tooth type 1A (CMT1A) and hereditary neuropathy with liability to pressure palsy (HNPP) are caused by mutations to the peripheral myelin protein 22 (PMP22) gene. A need exists for sensitive and reliable biomarkers of progression and treatment response. Magnetic resonance imaging (MRI) metrics of nerve pathology and morphology were investigated for this purpose. METHODS: MRI was performed at 3.0 T in the thigh of CMT1A (N = 11) and HNPP patients (N = 12) and controls (N = 23). Three potential imaging biomarkers of the sciatic nerve were investigated: 1) magnetization transfer ratio (MTR), which assays myelin content, and 2) cross-sectional area (CSA) and 3) circularity, which assay morphological changes. Potential imaging biomarkers were compared across cohorts and assessed for relationships with disability in the legs (CMTESL ), compound motor action potentials (CMAP), and motor conduction velocities (MCV). Inter-rater reliability and test-retest repeatability were established for each imaging metric. RESULTS: Significant differences in MTR, CSA, and circularity were observed in CMT1A relative to controls (p = 0.02, p < 0.001, and p = 0.003, respectively, via Wilcoxon rank-sum tests). Differences were not observed in the HNPP cohort. Significant relationships were observed between MTR and clinical metrics (CMTESL : p = 0.003, CMAP: p = 0.03, MCV: p = 0.01); and between CSA and electrophysiology (CMAP: p = 0.002, MCV: p < 0.001). All metrics were reliable and repeatable with MTR the most reliable (intraclass correlation coefficient [ICC] >0.999, CV = 0.30%) and repeatable (ICC = 0.84, CV = 3.16%). INTERPRETATION: MTR, CSA, and circularity showed promise as reliable and sensitive biomarkers of CMT1A, but not HNPP. These warrant longitudinal investigation as response biomarkers in upcoming clinical trials of CMT1A, while other methods should be considered for HNPP.
Assuntos
Doença de Charcot-Marie-Tooth , Neuropatia Hereditária Motora e Sensorial , Biomarcadores , Doença de Charcot-Marie-Tooth/diagnóstico por imagem , Doença de Charcot-Marie-Tooth/genética , Neuropatia Hereditária Motora e Sensorial/diagnóstico por imagem , Humanos , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Reprodutibilidade dos TestesRESUMO
Background: Magnetic resonance imaging (MRI) is used extensively to quantify myelin content, however computational bottlenecks remain challenging for advanced imaging techniques in clinical settings. We present a fast, open-source toolkit for processing quantitative magnetization transfer derived from selective inversion recovery (SIR) acquisitions that allows parameter map estimation, including the myelin-sensitive macromolecular pool size ratio (PSR). Significant progress has been made in reducing SIR acquisition times to improve clinically feasibility. However, parameter map estimation from the resulting data remains computationally expensive. To overcome this computational limitation, we developed a computationally efficient, open-source toolkit implemented in the Julia language. Methods: To test the accuracy of this toolkit, we simulated SIR images with varying PSR and spin-lattice relaxation time of the free water pool (R 1f) over a physiologically meaningful scale from 5% to 20% and 0.5 to 1.5 s-1, respectively. Rician noise was then added, and the parameter maps were estimated using our Julia toolkit. Probability density histogram plots and Lin's concordance correlation coefficients (LCCC) were used to assess accuracy and precision of the fits to our known simulation data. To further mimic biological tissue, we generated five cross-linked bovine serum albumin (BSA) phantoms with concentrations that ranged from 1.25% to 20%. The phantoms were imaged at 3T using SIR, and data were fit to estimate PSR and R 1f. Similarly, a healthy volunteer was imaged at 3T, and SIR parameter maps were estimated to demonstrate the reduced computational time for a real-world clinical example. Results: Estimated SIR parameter maps from our Julia toolkit agreed with simulated values (LCCC > 0.98). This toolkit was further validated using BSA phantoms and a whole brain scan at 3T. In both cases, SIR parameter estimates were consistent with published values using MATLAB. However, compared to earlier work using MATLAB, our Julia toolkit provided an approximate 20-fold reduction in computational time. Conclusions: Presented here, we developed a fast, open-source, toolkit for rapid and accurate SIR MRI using Julia. The reduction in computational cost should allow SIR parameters to be accessible in clinical settings.
Assuntos
Imageamento por Ressonância Magnética , Bainha de Mielina , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Neuroimagem , Simulação por ComputadorRESUMO
Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) can probe tissue biochemistry in vivo with high resolution and sensitivity without requiring exogenous contrast agents. Applying CEST MRI at ultrahigh field provides advantages of increasing spectral resolution and improving sensitivity to metabolites with faster proton exchange rates such as glutamate, a critical neurotransmitter in the brain. Prior magnetic resonance spectroscopy and CEST MRI studies have revealed altered regulation of glutamate in patients with multiple sclerosis (MS). While CEST imaging facilitates new strategies for investigating the pathology underlying this complex and heterogeneous neurological disease, CEST signals are contaminated or diluted by concurrent effects (e.g., semi-solid magnetization transfer (MT) and direct water saturation) and are scaled by the T1 relaxation time of the free water pool which may also be altered in the context of disease. In this study of 20 relapsing-remitting MS patients and age- and sex-matched healthy volunteers, glutamate-weighted CEST data were acquired at 7.0 T. A Lorentzian fitting procedure was used to remove the asymmetric MT contribution from CEST z-spectra, and the apparent exchange-dependent relaxation (AREX) correction was applied using an R1 map derived from an inversion recovery sequence to further isolate glutamate-weighted CEST signals from concurrent effects. Associations between AREX and cognitive function were examined using the Minimal Assessment of Cognitive Function in MS battery. After isolating CEST effects from MT, direct water saturation, and T1 effects, glutamate-weighted AREX contrast remained higher in gray matter than in white matter, though the difference between these tissues decreased. Glutamate-weighted AREX in normal-appearing gray and white matter in MS patients did not differ from healthy gray and white matter but was significantly elevated in white matter lesions. AREX in some cortical regions and in white matter lesions correlated with disability and measures of cognitive function in MS patients. However, further studies with larger sample sizes are needed to confirm these relationships due to potential confounding effects. The application of MT and AREX corrections in this study demonstrates the importance of isolating CEST signals for more specific characterization of the contribution of metabolic changes to tissue pathology and symptoms in MS.
RESUMO
BACKGROUND: Multiple sclerosis is characterized by the formation of central nervous system demyelinating lesions with microvasculature inflammation. OBJECTIVE: Evaluate how lesion cerebral perfusion relates to white matter microstructural integrity in patients with RRMS using perfusion MRI and myelin-related T1-weighted to T2-weighted (T1w/T2w) ratios. METHODS: Forty-eight patients with RRMS were imaged with dynamic susceptibility contrast imaging using SAGE (spin- and gradient-echo) to calculate global and capillary-sized perfusion parameters, including cerebral blood flow (CBF), volume (CBV), and mean transit time (MTT). T1w/T2w ratios were used to indirectly assess white matter microstructural integrity. RESULTS: For global perfusion metrics, CBF was reduced 28.4% in lesion regions of interest (ROIs) compared to normal appearing white matter (NAWM), CBV was reduced 25.9% in lesion ROIs compared to NAWM, and MTT increased 12.9%. For capillary perfusion metrics (via spin-echo (SE)), CBF-SE was reduced 35.7% in lesion ROIs compared to NAWM, CBV-SE was reduced 35.2% in lesion ROIs compared to NAWM, and MTT-SE increased 9.1%. Capillary-level CBF was correlated (ρ = 0.34, p = 0.024) with white matter microstructural integrity in lesion ROIs. CONCLUSION: This study demonstrates that lesion perfusion is reduced at both the global and capillary level and capillary-associated hypoperfusion is associated with reduced white matter microstructural integrity in RRMS.
RESUMO
OBJECTIVE: Primary repair of peripheral nerves is recommended following transection; however, patient management following repair is challenged by a lack of biomarkers to nerve regeneration. Previous studies have demonstrated that diffusion magnetic resonance imaging (MRI) may provide viable biomarkers of nerve regeneration in injury models; though, these methods have not been systematically evaluated in graded partial transections and repairs. METHODS: Ex vivo diffusion MRI was performed in fixed rat sciatic nerve samples 4 or 12 weeks following partial nerve transection and repair (25% cut = 12, 50% cut = 12 and 75% cut = 11), crush injuries (n = 12), and sham surgeries (n = 9). Behavioral testing and histologic evaluation were performed in the same animals and nerve samples for comparison. RESULTS: Diffusion tractography provided visual characterizations of nerve damage and recovery consistent with the expected degree of injury within each cohort. In addition, quantitative indices from diffusion MRI correlated with both histological and behavioral evaluations, the latter of indicated full recovery for sham and crush nerves and limited recovery in all partially transected/repaired nerves. Nerve recovery between 4 and 12 weeks was statistically significant in partial transections 50% and 75% depth cuts (p = 0.043 and p = 0.022) but not for 25% transections. INTERPRETATION: Our findings suggest that DTI can i) distinguish different degrees of partial nerve transection following surgical repair and ii) map spatially heterogeneous nerve recovery (e.g., due to collateral sprouting) from 4 to 12 weeks in partially transected nerves.
Assuntos
Traumatismos dos Nervos Periféricos , Animais , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Humanos , Regeneração Nervosa , Traumatismos dos Nervos Periféricos/diagnóstico por imagem , Ratos , Nervo Isquiático/diagnóstico por imagemRESUMO
BACKGROUND AND PURPOSE: Axonal injury is a key player of disability in persons with multiple sclerosis (pwMS). Yet, detecting and measuring it in vivo is challenging. The neurite orientation dispersion and density imaging (NODDI) proposes a novel framework for probing axonal integrity in vivo. NODDI at 3.0 Tesla was used to quantify tissue damage in pwMS and its relationship with disease progression. METHODS: Eighteen pwMS (4 clinically isolated syndrome, 11 relapsing remitting, and 3 secondary progressive MS) and nine age- and sex-matched healthy controls underwent a brain MRI, inclusive of clinical sequences and a multi-shell diffusion acquisition. Parametric maps of axial diffusivity (AD), neurite density index (ndi), apparent isotropic volume fraction (ivf), and orientation dispersion index (odi) were fitted. Anatomically matched regions of interest were used to quantify AD and NODDI-derived metrics and to assess the relations between these measures and those of disease progression. RESULTS: AD, ndi, ivf, and odi significantly differed between chronic black holes (cBHs) and T2-lesions, and between the latter and normal appearing white matter (NAWM). All metrics except ivf significantly differed between NAWM located next to a cBH and that situated contra-laterally. Only NAWM odi was significantly associated with T2-lesion volume, the timed 25-foot walk test and disease duration. CONCLUSIONS: NODDI is sensitive to tissue injury but its relationship with clinical progression remains limited.
Assuntos
Lesões Encefálicas , Esclerose Múltipla , Substância Branca , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética , NeuritosRESUMO
BACKGROUND: Axonal injury is the primary source of irreversible neurological decline in persons with multiple sclerosis (pwMS). Identifying and quantifying myelin and axonal loss in lesional and perilesional tissue in vivo is fundamental for a better understanding of multiple sclerosis (MS) outcomes and patient impairment. Using advanced magnetic resonance imaging (MRI) methods, consisting of selective inversion recovery quantitative magnetization transfer imaging (SIR-qMT) and multi-compartment diffusion MRI with the spherical mean technique (SMT), we conducted a cross-sectional pilot study to assess myelin and axonal damage in the normal appearing white matter (NAWM) surrounding chronic black holes (cBHs) and how this pathology correlates with disability in vivo. We hypothesized that lesional axonal transection propagates tissue injury in the surrounding NAWM and that the degree of this injury is related to patient disability. METHODS: Eighteen pwMS underwent a 3.0 Tesla conventional clinical MRI, inclusive of T1 and T2 weighted protocols, as well as SIR-qMT and SMT. Regions of interests (ROIs) were manually delineated in cBHs, NAWM neighboring cBHs (perilesional NAWM), distant ipsilateral NAWM and contra-lateral distant NAWM. SIR-qMT-derived macromolecular-to-free pool size ratio (PSR) and SMT-derived apparent axonal volume fraction (Vax) were extracted to infer on myelin and axonal content, respectively. Group differences were assessed using mixed-effects regression models and correlation analyses were obtained by bootstrapping 95% confidence interval. RESULTS: In comparison to perilesional NAWM, both PSR and Vax values were reduced in cBHs (p < 0.0001) and increased in distant contra-lateral NAWM ROIs (p < 0.001 for PSR and p < 0.0001 for Vax) but not ipsilateral NAWM (p = 0.176 for PSR and p = 0.549 for Vax). Vax values measured in cBHs correlated with those in perilesional NAWM (Pearson rho = 0.63, p < 0.001). No statistically relevant associations were seen between PSR/Vax values and clinical and/or MRI metrics of the disease with the exception of cBH PSR values, which correlated with the Expanded Disability Status Scale (Pearson rho = -0.63, p = 0.03). CONCLUSIONS: Our results show that myelin and axonal content, detected by PSR and Vax, are reduced in perilesional NAWM, as a function of the degree of focal cBH axonal injury. This finding is indicative of an ongoing anterograde/retrograde degeneration and suggests that treatment prevention of cBH development is a key factor for preserving NAWM integrity in surrounding tissue. It also suggests that measuring changes in perilesional areas over time may be a useful measure of outcome for proof-of-concept clinical trials on neuroprotection and repair. PSR and Vax largely failed to capture associations with clinical and MRI characteristics, likely as a result of the small sample size and cross-sectional design, however, longitudinal assessment of a larger cohort may unravel the impact of this pathology on disease progression.
Assuntos
Esclerose Múltipla , Substância Branca , Encéfalo , Estudos Transversais , Humanos , Imageamento por Ressonância Magnética , Esclerose Múltipla/complicações , Esclerose Múltipla/diagnóstico por imagem , Bainha de Mielina , Projetos Piloto , Substância Branca/diagnóstico por imagemRESUMO
OBJECTIVE: Management of peripheral nerve injuries requires physicians to rely on qualitative measures from patient history, electromyography, and physical exam. Determining a successful nerve repair can take months to years for proximal injuries, and the resulting delays in clinical decision-making can lead to a negative impact on patient outcomes. Early identification of a failed nerve repair could prevent permanent muscle atrophy and loss of function. This study aims to test the feasibility of performing diffusion tensor imaging (DTI) to evaluate injury and recovery following repair of wrist trauma. We hypothesize that DTI provides a noninvasive and reliable assessment of regeneration, which may improve clinical decision-making and alter the clinical course of surgical interventions. METHODS: Clinical and MRI measurements from subjects with traumatic peripheral nerve injury, carpal tunnel syndrome, and healthy control subjects were compared to evaluate the relationship between DTI metrics and injury severity. RESULTS: Fractional anisotropy from DTI was sensitive to differences between damaged and healthy nerves, damaged and compressed nerves, and injured and healthy contralateral nerves. Longitudinal measurements in two injury subjects also related to clinical outcomes. Implications of other diffusion measures are also discussed. INTERPRETATION: DTI is a sensitive tool for wrist nerve injuries and can be utilized for monitoring nerve recovery. Across three subjects with nerve injuries, this study has shown how DTI can detect abnormalities between injured and healthy nerves, measure recovery, and determine if re-operation was successful. Additional comparisons to carpal tunnel syndrome and healthy nerves show that DTI is sensitive to the degree of impairment.
Assuntos
Síndrome do Túnel Carpal/diagnóstico por imagem , Síndrome do Túnel Carpal/fisiopatologia , Imagem de Tensor de Difusão/métodos , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/diagnóstico por imagem , Traumatismos dos Nervos Periféricos/fisiopatologia , Adulto , Idoso , Anisotropia , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Recuperação de Função Fisiológica/fisiologiaRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
BACKGROUND: Nerve regeneration after an injury should occur in a timely fashion for function to be restored. Current methods cannot monitor regeneration prior to muscle reinnervation. Diffusion tensor imaging has been previously shown to provide quantitative indices after nerve recovery. The goal of this study was to validate the use of this technology following nerve injury via a series of rat sciatic nerve injury/repair studies. METHODS: Sprague-Dawley rats were prospectively divided by procedure (sham, crush, or cut/repair) and time points (1, 2, 4, and 12 weeks after surgery). At the appropriate time point, each animal was euthanized and the sciatic nerve was harvested and fixed. Data were obtained using a 7-Tesla magnetic resonance imaging system. For validation, findings were compared to behavioral testing (foot fault asymmetry and sciatic function index) and cross-sectional axonal counting of toluidine blue-stained sections examined under light microscopy. RESULTS: Sixty-three rats were divided into three treatment groups (sham, n = 21; crush, n = 23; and cut/repair, n = 19). Fractional anisotropy was able to differentiate between recovery following sham, crush, and cut/repair injuries as early as 2 weeks (p < 0.05), with more accurate differentiation thereafter. More importantly, the difference in anisotropy between distal and proximal regions recognized animals with successful and failed recoveries according to behavioral analysis, especially at 12 weeks. In addition, diffusion tension imaging-based tractography provided a visual representation of nerve continuity in all treatment groups. CONCLUSIONS: Diffuse tensor imaging is an objective and noninvasive tool for monitoring nerve regeneration. Its use could facilitate earlier detection of failed repairs to potentially help improve outcomes.
Assuntos
Imagem de Tensor de Difusão/métodos , Nervo Isquiático/lesões , Animais , Lesões por Esmagamento/fisiopatologia , Lesões por Esmagamento/cirurgia , Modelos Animais de Doenças , Masculino , Regeneração Nervosa/fisiologia , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/fisiologia , Nervo Isquiático/fisiologia , Nervo Isquiático/cirurgiaRESUMO
Selective inversion recovery (SIR) is a quantitative magnetization transfer (qMT) method that provides estimates of parameters related to myelin content in white matter, namely the macromolecular pool-size-ratio (PSR) and the spin-lattice relaxation rate of the free pool (R1f), without the need for independent estimates of ∆B0, B1+, and T1. Although the feasibility of performing SIR in the human brain has been demonstrated, the scan times reported previously were too long for whole-brain applications. In this work, we combined optimized, short-TR acquisitions, SENSE/partial-Fourier accelerations, and efficient 3D readouts (turbo spin-echo, SIR-TSE; echo-planar imaging, SIR-EPI; and turbo field echo, SIR-TFE) to obtain whole-brain data in 18, 10, and 7 min for SIR-TSE, SIR-EPI, SIR-TFE, respectively. Based on numerical simulations, all schemes provided accurate parameter estimates in large, homogenous regions; however, the shorter SIR-TFE scans underestimated focal changes in smaller lesions due to blurring. Experimental studies in healthy subjects (n = 8) yielded parameters that were consistent with literature values and repeatable across scans (coefficient of variation: PSR = 2.2-6.4%, R1f = 0.6-1.4%) for all readouts. Overall, SIR-TFE parameters exhibited the lowest variability, while SIR-EPI parameters were adversely affected by susceptibility-related image distortions. In patients with relapsing remitting multiple sclerosis (n = 2), focal changes in SIR parameters were observed in lesions using all three readouts; however, contrast was reduced in smaller lesions for SIR-TFE, which was consistent with the numerical simulations. Together, these findings demonstrate that efficient, accurate, and repeatable whole-brain SIR can be performed using 3D TFE, EPI, or TSE readouts; however, the appropriate readout should be tailored to the application.