Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Res Hepatol Gastroenterol ; 48(7): 102370, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38729564

RESUMO

Cholecystectomy is considered as a safe procedure to treat patients with gallstones. However, epidemiological studies highlighted an association between cholecystectomy and metabolic disorders, such as type 2 diabetes mellitus and metabolic dysfunction-associated steatotic liver disease (MASLD), independently of the gallstone disease. Following cholecystectomy, bile acids flow directly from the liver into the intestine, leading to changes in the entero-hepatic circulation of bile acids and their metabolism. The changes in bile acids metabolism impact the gut microbiota. Therefore, cholecystectomized patients display gut dysbiosis characterized by a reduced diversity, a loss of bacteria producing short-chain fatty acids and an increase in pro-inflammatory bacteria. Alterations of both bile acids metabolism and gut microbiota occurring after cholecystectomy can promote the development of metabolic disorders. In this review, we discuss the impact of cholecystectomy on bile acids and gut microbiota and its consequences on metabolic functions.

2.
Front Endocrinol (Lausanne) ; 12: 701994, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552556

RESUMO

Obesity and insulin resistance (IR) are well-studied risk factors for systemic cardiovascular disease, but their impact on pulmonary hypertension (PH) is not well clarified. This study aims to investigate if diet-induced obesity induces PH and if peroxisome-proliferator-activated receptor (PPAR-γ) and/or endoplasmic reticulum (ER) stress are involved in this process. Mice were maintained on a high-fat diet (HFD) for 4 months, and IR and PH were confirmed. In a separate group, after 4 months of HFD, mice were treated with pioglitazone (PIO) or 4-phenylbutyric acid for the last month. The results demonstrated that HFD for at least 4 months is able to increase pulmonary artery pressure, which is maintained, and this animal model can be used to investigate the link between IR and PH, without changes in ER stress in the pulmonary artery. There was also a reduction in circulating adiponectin and in perivascular adiponectin expression in the pulmonary artery, associated with a reduction in PPAR-γ expression. Treatment with PIO improved IR and PH and reversed the lower expression of adiponectin and PPAR-γ in the pulmonary artery, highlighting this drug as potential benefit for this poorly recognized complication of obesity.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Estresse do Retículo Endoplasmático , Hipertensão Pulmonar/patologia , Resistência à Insulina , Obesidade/complicações , PPAR gama/antagonistas & inibidores , Artéria Pulmonar/patologia , Animais , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , PPAR gama/genética , PPAR gama/metabolismo , Artéria Pulmonar/metabolismo
3.
Front Microbiol ; 12: 623951, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135869

RESUMO

This study aimed to investigate the impact of the food matrix (orange juice and yogurt) on the effects of the spore-forming probiotic microorganism Bacillus coagulans GBI-30 6086 in health parameters and gastrointestinal tract (gut) bacterial diversity in Wistar male rats. Rats (n = 48) were randomly distributed into six groups. The groups were the Control (which received sterile distilled water), Juice (which received orange juice), Yogurt (which received yogurt), Probiotic Bacillus (which received B. coagulans GBI-30 6086 in distilled water), Probiotic Juice (which received orange juice with B. coagulans GBI-30 6086), and Probiotic Yogurt (which received yogurt with B. coagulans GBI-30 6086). Each animal belonging to the different groups was treated for 21 days. The daily administration of probiotic juice or probiotic yogurt did not affect the rats' food or body weight. Rats fed with Probiotic Yogurt showed lower glucose and triglycerides levels (p < 0.05) in comparison to the control group (p < 0.05), while no changes in these parameters were observed in the rats fed with Probiotic Juice. Rats fed with Probiotic Yogurt showed a higher gut bacterial diversity than the control group (p < 0.05), and higher abundance (p < 0.05) of Vibrionales, Enterobacteriales, Burkholderiales, Erysipelotrichales, and Bifidobacteriales compared to all other groups. No changes were observed in the expression levels of antioxidant enzymes or heat shock protein 70 of rats fed with probiotic yogurt or probiotic juice. Results reveal that the consumption of yogurt containing B. coagulans GBI-30 6086 decreases triglycerides and glucose levels and positively impacts the gut bacterial ecology in healthy rats. These animal model findings indicate that the matrix also impacts the functionality of foods carrying spore-forming probiotics. Besides, this research indicates that yogurt is also a suitable food carrier of Bacillus coagulans GBI-30 6086.

4.
Neurogastroenterol Motil ; 32(2): e13745, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31721393

RESUMO

BACKGROUND: Obesity has been linked to gastrointestinal disorders, and the loss of myenteric neurons in the intestine caused by high-fat diets (HFD) has been attributed to changes in microbiota and lipotoxicity. We investigated whether the prebiotic inulin modulates bacterial populations and alleviates neuronal loss in mice fed HFD. METHODS: Swiss mice were fed purified rodent diet or HFD (59% kcal fat), or both diets supplemented with inulin for 17 weeks. Intestinal motility was assessed and a metagenome analysis of the colonic microbiota was performed. The gene expression of inflammatory markers was evaluated, and immunofluorescence was performed for different types of myenteric neurons and glial cells in the distal colon. KEY RESULTS: The HFD caused obesity and delayed colonic motility. The loss of myenteric neurons and glial cells in obese mice affected all of the studied neuronal populations, including neurons positive for myosin-V, neuronal nitric oxide synthase, vasoactive intestinal peptide, and calretinin. Although obese mice supplemented with inulin exhibited improvements in colonic motility, neuronal, and glial cell loss persisted. The HFD did not altered the expression levels of inflammatory cytokines in the intestine or the prevalence of the major groups in microbiota, but inulin increased the proportion of the genus Akkermansia in the obese mice. CONCLUSIONS AND INFERENCES: In Swiss mice, the HFD-induced neuronal loss but did not change the major groups in microbiota. This suggests that, despite the increase in the beneficial bacteria, other factors that are directly linked to excess dietary lipid intake affect the enteric nervous system.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal , Plexo Mientérico/patologia , Neurônios/patologia , Obesidade/patologia , Animais , Motilidade Gastrointestinal/fisiologia , Inulina/farmacologia , Masculino , Camundongos , Obesidade/etiologia , Probióticos/farmacologia
5.
Chemosphere ; 182: 267-275, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28500971

RESUMO

The aim of this work was to investigate the effects of glyphosate on the antioxidant system, as well as the neurotoxic effects on the larvae of Rhamdia quelen. A completely randomized design was implemented with the eggs of silver catfish distributed in 48 containers with 300 mL of water, which were subdivided randomly into two groups: control and treated with 6.5 mg L of glyphosate. These groups were evaluated at four time points (12 h, 24 h, 48 h, and 72 h), each with six replications. The survival rate of eggs/larvae (%) was evaluated, and samples were collected for antioxidant system analysis (catalase - CAT, glutathione transferase - GST, glutathione reductase - GR, and lipoperoxidation - LPO), and neurotoxic evaluation (cholinesterase - ChE). Throughout the 72 h of experimentation, there was a higher survival rate among the animals treated with glyphosate. The highest value of integrated biomarkers response (IBR = 1.26) was at 12 h, presenting induction of the cholinesterase (ChE) enzyme and GR. At 24 h, the value of IBR was -2.56, with inhibition of ChE and induction of GR. At 48 h, the value was -0.76, with induction of LPO. The lowest value of IBR was at 72 h (-4.65), with induction of GST and inhibition of all other biomarkers. Finally, it was possible to detect an acute effect of glyphosate throughout the early development of R. quelen, with a decrease in the antioxidant system control and neurotoxic effects.


Assuntos
Peixes-Gato , Glicina/análogos & derivados , Larva/efeitos dos fármacos , Praguicidas/toxicidade , Animais , Antioxidantes/análise , Antioxidantes/farmacologia , Biomarcadores/metabolismo , Catalase/metabolismo , Colinesterases/metabolismo , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Glicina/farmacologia , Larva/metabolismo , Neurotoxinas/farmacologia , Oxirredução , Praguicidas/química , Taxa de Sobrevida , Poluentes Químicos da Água/toxicidade , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA