Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Fundam Clin Pharmacol ; : e13007, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738393

RESUMO

Candida spp. is an opportunistic pathogen capable of causing superficial to invasive infections. Morphological transition is one of the main virulence factors of this genus and, therefore, is an important variable to be considered in pharmacological interventions. Riparins I, II, III, and IV are alkamide-type alkaloids extracted from the unripe fruit of Aniba riparia, whose remarkable pharmacological properties were previously demonstrated. This work aimed to evaluate in silico and in vitro the inhibitory effects of Riparins on the morphological transition of Candida albicans, Candida tropicalis, and Candida krusei. Molecular docking was applied to analyze the inhibitory effects of riparins against proteins such as N-acetylglucosamine, CYP-51, and protein kinase A (PKA) using the Ramachandran plot. The ligands were prepared by MarvinSketch and Spartan software version 14.0, and MolDock Score and Rerank Score were used to analyze the affinity of the compounds. In vitro analyses were performed by culturing the strains in humid chambers in the presence of riparins or fluconazole (FCZ). The morphology was observed through optical microscopy, and the size of the hyphae was determined using the ToupView software. In silico analysis demonstrated that all riparins are likely to interact with the molecular targets: GlcNAc (>50%), PKA (>60%), and CYP-51 (>70%). Accordingly, in vitro analysis showed that these compounds significantly inhibited the morphological transition of all Candida strains. In conclusion, this study demonstrated that riparins inhibit Candida morphological transition and, therefore, can be used to overcome the pathogenicity of this genus.

2.
Microb Pathog ; 180: 106129, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37119940

RESUMO

The increased resistance of microorganisms to antimicrobial drugs makes it necessary to search for new active compounds, such as chalcones. Their simple chemical structure makes them molecules easy to synthesize. Therefore, the aim of this study was to evaluate the antimicrobial and potentiating activity of antibiotics and antifungals by synthetic chalcones against strains of Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans and Candida tropicalis. The synthesis of chalcones was carried out by Claisen-Schimidt aldol condensation. Nuclear Magnetic Resonance (NMR) and Gas Chromatography Coupled to Mass Spectrometry (GC/MS) were also performed. Microbiological tests were performed by the broth microdilution method, using gentamicin, norfloxacin and penicillin as standard drugs for the antibacterial assay, and fluconazole for the antifungal assay. Three chalcones were obtained (1E,4E)-1,5-diphenylpenta-1,4-dien-3-one (DB-Acetone), (1E,3E,6E,8E)-1,9-diphenylnone-1,3,6,8-tetraen-5-one (DB-CNM), (1E,4E)-1,5-bis (4-methoxyphenyl) penta-1,4-dien-3-one (DB-Anisal). The compound DB-Acetone was able to inhibit P. aeruginosa ATCC 9027 at a concentration of 1.4 × 102 µM (32 µg/mL), while DB-CNM and DB-Anisal inhibited the growth of S. aureus ATCC 25923 at 17.88 × 102 µM and 2.71 × 101 µM (512 µg/mL and 8 µg/mL) respectively. In the combined activity, DB-Anisal was able to potentiate the effect of the three antibacterial drugs tested against E. coli 06, norfloxacin (128 for 4 µg/mL ±1) against P. aeruginosa 24 and penicillin (1,024 for 16 µg/mL ±1) against S. aureus 10. In antifungal assays, chalcones were not able to inhibit the growth of fungal strains tested. However, both showed potentiating activity with fluconazole, ranging from 8.17 x 10-1 µM (0.4909 µg/mL) to 2.35 µM (13.96 µg/mL). It is concluded that synthetic chalcones have antimicrobial potential, demonstrating good intrinsic activity against fungi and bacteria, in addition to potentiating the antibiotics and antifungal tested. Further studies are needed addressing the mechanisms of action responsible for the results found in this work.


Assuntos
Anti-Infecciosos , Chalconas , Antifúngicos/química , Fluconazol/farmacologia , Chalconas/farmacologia , Chalconas/química , Staphylococcus aureus , Norfloxacino/farmacologia , Escherichia coli , Acetona/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/química , Candida albicans , Penicilinas/farmacologia , Testes de Sensibilidade Microbiana
3.
Plants (Basel) ; 12(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36679128

RESUMO

Fungi of the Candida genus are responsible for invasive candidiasis, which affects people all over the world and has high mortality rates. This is due to their virulence factors, which give them great resistance and pathogenicity. In addition, the emergence of multidrug-resistant strains makes it difficult to treat these infections. In this way, natural products have emerged as an alternative to standard drugs, where plants known for their medicinal properties such as Turnera subulata become attractive to research. The present work aimed to analyze the ethanol extract of Turnera subulata leaves against standard strains of Candida albicans, Candida krusei and Candida tropicalis using broth microdilution techniques. The identification of the compounds in T. subulata leaves by LC-MS revealed the presence of a wide variety of substances such as carboxylic acids and terpenes, with flavonoids and fatty acids being more evident. The antifungal assays showed that the extract was not able to inhibit the growth of the tested strains at concentrations with a clinical relevance. However, at higher concentrations, it was able to inhibit the fungal dimorphism of C. albicans and C. tropicalis. It is possible that the T. subulata extract has potential as an inhibitor of fungal virulence factors without affecting the cell viability. Further research should be carried out in order to assess its inhibitory potential for other fungal virulence factors.

4.
3 Biotech ; 12(3): 61, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35186658

RESUMO

Spondias mombin is used in the folk medicine for the treatment of diarrhea and dysentery, indicating that extracts obtained from this species may present pharmacological activities against pathogenic microorganisms. The purpose of this work was to investigate the chemical composition and evaluate the antimicrobial activity of extracts obtained from the leaves (aqueous) and bark (hydroethanolic) of S. mombin both as single treatments and in combination with conventional drugs. Following a qualitative chemical prospection, the extracts were analyzed by HPLC-DAD. The antimicrobial activities were evaluated by microdilution. The combined activity of drugs and extracts was verified by adding a subinhibitory concentration of the extract in the presence of variable drug concentrations. The Minimum Fungicidal Concentration (MFC) was determined by a subculture of the microdilution test, while the effect of the in vitro treatments on morphological transition was analyzed by subculture in moist chambers. While the qualitative analysis detected the presence of phenols and flavonoids, the HPLC analysis identified quercetin, caffeic acid, and catechin as major components in the leaf extract, whereas kaempferol and quercetin were found as major compounds in the bark extract. The extracts showed effective antibacterial activities only against the Gram-negative strains. With regard to the combined activity, the leaf extract potentiated the action of gentamicin and imipenem (against Staphylococcus aureus), while the bark extract potentiated the effect of norfloxacin (against S. aureus), imipenem (against Escherichia coli), and norfloxacin (against Pseudomonas aeruginosa). A more significant antifungal (fungistatic) effect was achieved with the bark extract (even though at high concentrations), which further enhanced the activity of fluconazole. The extracts also inhibited the emission of filaments by Candida albicans and Candida tropicalis. Together, these findings suggest that that the extract constituents may act by favoring the permeability of microbial cells to conventional drugs, as well as by affecting virulence mechanisms in Candida strains.

5.
Folia Microbiol (Praha) ; 67(3): 447-457, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35112321

RESUMO

Due to the increase in fungal resistance to existing drugs, a need exists to search for new antifungals. This study aimed to evaluate the antifungal activity of α, ß, and δ-damascone and inclusion complexes with ß-cyclodextrin against different Candida spp. The inclusion complex of ß-damascone was prepared by the co-evaporation method using three molar proportions (1:1; 2:1; 3:1 (ßDA-ßCD)) and analyzed using Fourier transform infrared spectroscopy (FTIR). Standard Candida albicans (CA INCQS 40,006), Candida krusei (CK INCQS 40,095), and Candida tropicalis (CT INCQS 40,042) strains were used to evaluate antifungal activity. The substances were tested individually or in association with fluconazole (FCZ). The IC50 and cell viability curve constructions were performed using the microdilution method. The minimum fungicidal concentration (MFC) was determined by the subculture method in a solid medium. The α, ß, and δ-DA isolated or in combination with fluconazole (FCZ) showed significant antifungal activity. ß-damascone showed effective complexation in the three molar proportions assayed; however, none of the inclusion complexes was demonstrated clinically significant effects against the fungal tested. Then, all compounds have shown promising antifungal activities; however, in vivo assays are necessary to have therapeutical application in the future.


Assuntos
Antifúngicos , beta-Ciclodextrinas , Antifúngicos/química , Antifúngicos/farmacologia , Candida , Fluconazol/farmacologia , Testes de Sensibilidade Microbiana , Norisoprenoides/farmacologia , beta-Ciclodextrinas/farmacologia
6.
Chem Phys Lipids ; 233: 104987, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33058818

RESUMO

Candida infections represent a threat to human health. Candida albicans is the main causative agent of invasive candidiasis, especially in immunosuppressed patients. The emergence of resistant strains has required the development of new therapeutic strategies. In this context, the use of liposomes as drug carrier systems is a promising alternative in drug development. Thus, considering the evidence demonstrating that sesquiterpene farnesol is a bioactive compound with antifungal properties, this study evaluated the activity farnesol-containing liposomes against different Candida strains. The IC50 of farnesol and its liposomal formulation was assessed in vitro using cultures of Candida albicans, Candida tropicalis, and Candida krusei. The Minimum Fungicidal Concentration (MFC) was established by subculture in solid medium. The occurrence of fungal dimorphism was analyzed using optical microscopy. The effects on antifungal resistance to fluconazole were assessed by evaluating the impact of combined therapy on the growth of Candida strains. The characterization of liposomes was carried out considering their vesicular size, polydispersion index, and zeta medium potential, in addition to electron microscopy analysis. Farnesol exerted an antifungal activity that might be associated with the inhibition of fungal dimorphism, especially in Candida albicans. The incorporation of farnesol into liposomes significantly increased its antifungal activity against C. albicans, C. tropicalis, and C. krusei. In addition, liposomal farnesol potentiated the action of fluconazole against C. albicans and C. tropicalis. On the other hand, the association of unconjugated farnesol with fluconazole resulted in antagonistic effects. In conclusion, farnesol-containing liposomes have the potential to be used in antifungal drug development. However, further research is required to investigate how the antifungal properties of farnesol are affected by the interaction with liposomes, contributing to the modulation of antifungal resistance to conventional drugs.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Farneseno Álcool/farmacologia , Fluconazol/farmacologia , Antifúngicos/química , Farmacorresistência Fúngica/efeitos dos fármacos , Farneseno Álcool/química , Fluconazol/química , Lipossomos/química , Lipossomos/farmacologia , Testes de Sensibilidade Microbiana
7.
Membranes (Basel) ; 10(9)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825411

RESUMO

(1) Background: Infections by Candida species represent a serious threat to the health of immunocompromised individuals. Evidence has indicated that nerolidol has significant antifungal properties. Nonetheless, its use is restricted due to a low water solubility and high photosensitivity. The incorporation into liposomes may represent an efficient alternative to improve the physicochemical and biopharmaceutical properties of this compound. The present study aimed to characterize the antifungal properties of liposomal nerolidol, alone or in combination with fluconazole. Of note, this is the first study reporting the antifungal activity of liposomal nerolidol and its potentiating effect in association with fluconazole. (2) Methods: The Inhibitory Concentration 50%-IC50 and minimum fungicide concentrations (MFC) of the substances against Candida albicans (CA), Candida tropicalis (CT), and Candida krusei (CK) were established by subculture in a solid medium. To evaluate the antifungal-enhancing effect, the MFC of fluconazole was determined in the presence or absence of subinhibitory concentrations of nerolidol (free or liposomal). The analysis of fungal dimorphism was performed through optical microscopy and the characterization of liposomes was carried out considering the vesicular size, polydispersion index, and zeta medium potential, in addition to a scanning electron microscopy analysis. (3) Results: The physicochemical characterization revealed that liposomes were obtained as homogenous populations of spherical vesicles. The data obtained in the present study indicate that nerolidol acts as an antifungal agent against Candida albicans and Candida tropicalis, in addition to potentiating (only in the liposomal form) the effect of fluconazole. However, the compound had little inhibitory effect on fungal dimorphism. (4) Conclusions: The incorporation of nerolidol into liposomes improved its antifungal-modulating properties.

8.
Antibiotics (Basel) ; 9(2)2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-32012710

RESUMO

The emergence of fungal resistance to commercial drugs has been a major problem for the WHO. In this context, research with natural products is promising in the discovery of new active substances. Thus, this work evaluated the antifungal effect of a medicinal plant (i.e., Mesosphaerum suaveolens) against strains of the genus Candida, tested the combined effect with the drug fluconazole, and, finally, determined the phenolic constituents present in the species. Initially, aqueous extracts of leaves (AELMs) and aerial parts (AEAPMs) of the species were prepared. For microbiological assays, the minimum fungicidal concentration was determined by broth microdilution, and the combined effect of fluconazole extracts were verified by sub-inhibitory microdilution concentrations (CFM/8) followed by spectrophotometric readings which were used to determine the IC50. HPLC detected the presence of flavonoids and phenolic acids, detecting eight compounds present in the samples of which caffeic acid and quercetin were major components. The AELMs modulated fluconazole activity since it decreased fluconazole's IC50 from 7.8 µg/mL to an IC50 of 4.7 µg/mL (CA LM 77) and from 28.8 µg/mL to 18.26 µg/mL (CA INCQS 40006) for the C. albicans strains. The AEAPMs were able to potentiate the effect of fluconazole more effectively than the AELMs. Such an effect was significant for the 16 µg/mL concentration for CA LM 77 and 32 µg/mL for CA INCQS 40006. The AEAPMs as well as the AELMs presented clinically relevant activities for C. tropicalis strains. For the C. tropicalis LM 23 strain, the AEPMs obtained an IC50 of 25 µg/mL and the AELMs an IC50 of 359.9 µg/mL.

9.
Food Chem Toxicol ; 135: 110987, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31759067

RESUMO

The Piper mikanianum species were investigated by the antimicrobial potential and chemical composition. Chemical analysis was performed by gas chromatography coupled to mass spectrometry (GC/MS). The Minimum Inhibitory Concentration (MIC) as well as the 50% Inhibitory Concentration against Candida strains were determined by microdilution. The effect of the drug-oil combination was also evaluated to verify possible synergism. The Minimum Fungicidal Concentration (MFC) was evaluated by subculturing the microdilution in Petri dishes and the anti-pleomorphism potential of the oil was tested in humid chambers. Chemical analysis revealed safrol as the major compound. The results from the intrinsic activity evaluation of the oil did not reveal a clinical importance, however, it presented a synergistic effect when associated with gentamicin against the multidrug resistant E. coli strain and when associated with fluconazole against fungal strains. Moreover, the oil possessed a fungistatic effect. Total inhibition of filamentous structures occurred in both Candida species in the anti-virulence test. The P. mikanianum essential oil showed a potentiating activity of drugs for which resistance exists and an inhibitory effect of one of the main virulence factors of the Candida genus, morphological transition, which has been previously shown to be responsible for causing invasive infections in human tissues.


Assuntos
Anti-Infecciosos/farmacologia , Cromatografia Gasosa-Espectrometria de Massas/métodos , Óleos Voláteis/farmacologia , Piper/química , Candida/classificação , Candida/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Especificidade da Espécie , Staphylococcus aureus/efeitos dos fármacos
10.
Artigo em Inglês | MEDLINE | ID: mdl-31300127

RESUMO

The oil presented the α-Terpinene as the major compound with 54.09% presence. Antibacterial activity demonstrated significant MIC against Staphylococcus aureus (256 µg/mL) and moderate against Pseudomonas aeruginosa (512 µg/mL). The modulating effect of antibiotics was significant against P. aeruginosa potentiating the effect of all the antibiotics tested. The IC50 observed for CT LM 23 was clinically relevant (19.3 µg/mL), similar to that obtained for CA INCQS 40006 (25.2 µg/mL). The combined effect with fluconazole also showed significant results, 0.1 and 22.7 µg/mL, for CT LM 23 and CA INCQS 40006, respectively. For CA LM 77 the IC50 was 101.9 µg/mL and for CT INCQS 40042 a value of 53.3 µg/mL. Regarding the modulation, both were considered of clinical relevance, 3.3 and 6.4 µg/mL. OEDA has low antioxidant activity (>1024 µg/mL). Therefore, the popular use against infections was corroborated by this work.


Assuntos
Amaranthaceae/química , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Bactérias/efeitos dos fármacos , Óleos Voláteis/farmacologia , Antibacterianos/química , Antioxidantes/química , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Óleos Voláteis/química , Folhas de Planta/química , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
11.
Artigo em Inglês | MEDLINE | ID: mdl-31174689

RESUMO

Phytochemical prospecting was performed by HPLC-DAD. The Inhibitory Concentration of 50% of mortality the microorganisms (IC50) was determined and a cell viability curve was obtained. Minimum Fungicidal Concentration (MFC) was determined by subculture in Sabourad Dextrose Agar. The effect of the combination extract/fluconazole was verified by microdilution, with the extracts in subinhibitory concentrations (MFC/16). Caffeic acid was the major compound of both extracts, representing 6.08% in the aqueous extract and 7.62% in the ethanolic extract. The extracts showed a fungistatic effect (MFC ≥ 16,384 µg/mL). The IC50 results demonstrated that the combination of the extracts with fluconazole were more significant than the products tested alone, with values from 4.9 to 34.8 µg/mL for the ethanolic extract/fluconazole and 5 to 84.7 µg/mL for the aqueous extract/fluconazole. The potentiating effect of fluconazole action was observed against C. albicans and C. tropicalis. In C. krusei the aqueous extract had an antagonistic effect.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Antifúngicos/química , Ácidos Cafeicos/farmacologia , Descoberta de Drogas , Sinergismo Farmacológico , Fluconazol/farmacologia , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Plantas Medicinais/química
12.
Food Chem Toxicol ; 119: 122-132, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29751075

RESUMO

Psidium guajava L. is a plant widely used for food and in folk medicine all over the world. Studies have shown that guava leaves have antifungal properties. In this study, Flavonoid and Tannic fractions were tested to investigate their chemical composition and antifungal potential in vitro.21 compounds in the two fractions, presenting a higher content of phenolic compounds. The antifungal assays were performed against Candida albicans, Candida tropicalis and Candida krusei by microdilution to determine the IC50 and the cell viability curve. Minimal Fungicidal Concentration(MFC) and the inhibitory effects of the association of the fractions with Fluconazole, as well as the assays used to verify any morphological changes were performed in microculture chambers based on the concentrations from the microdilution. The IC50 of the isolated fractions and the fractions associated with each other were calculated, varying from 69.29 to 3444.62 µg/mL and the fractions associated with fluconazole varied from 925.56 to 1.57 µg/mL, it was clear that the association of the natural product with the antifungal presented a synergism. The fractions affected pleomorphism capacity and have a potential antifungal activity as they caused fungal inhibition in isolated use, potentiated the action of Fluconazole, reducing its concentration and impeding morphological transition, one of the virulence factors of the genus.


Assuntos
Antifúngicos/farmacologia , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Extratos Vegetais/farmacologia , Antifúngicos/química , Candida/efeitos dos fármacos , Estrutura Molecular , Extratos Vegetais/química , Psidium/química
13.
Food Chem ; 261: 233-239, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-29739588

RESUMO

The development of fungal resistance to antifungal drugs has been worsening over the years and as a result research on new antifungal agents derived from plants has intensified. Eugenia uniflora L. (pitanga) has been studied for its various biological actions. In this study the chemical composition and antifungal effects of the E. uniflora essential oil (EULEO) were investigated against Candida albicans (CA), Candida krusei (CK) and Candida tropicalis (CT) standard strains. The essential oil obtained through hydro-distillation was analyzed by gas chromatography coupled to mass spectrometry (GC-MS). To determine the IC50 of the oil, the cellular viability curve and the inhibitory effects were measured by means of the oil's association with Fluconazole in a broth microdilution assay with spectrophotometric readings. The Minimum Fungicidal Concentration (MFC) was determined by solid medium subculture with the aid of a guide plate while the assays used to verify morphological changes emerging from the action of the fractions were performed in microculture chambers at concentrations based on the microdilution. Two major oil constituents stand out from the chemical analysis: selina-1,3,7(11)-trien-8-one (36.37%) and selina-1,3,7(11)-trien-8-one epoxide (27.32%). The concentration that reduced microorganismal growth was ≥8,192 µg/mL while the IC50 varied, this being between 1892.47 and 12491.80 µg/mL (oil), 10.07 - 80.78 µg/mL (fluconazole) and 18.53 - 295.60 µg/mL (fluconazole + oil). The combined activity (fluconazole + oil) resulted in indifference and antagonism. A MFC of the oil in association with fluconazole was recorded at the concentration of 8,192 µg/mL against CA and CK. The oil caused the inhibition of CA and CT morphological transition. In view of the results obtained, additional research is needed to elucidate the activity of the E. uniflora oil over genetic and biochemical processes regarding its effect on Candida spp. virulence.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Eugenia/química , Óleos Voláteis/farmacologia , Antifúngicos/química , Candida/patogenicidade , Candida albicans/efeitos dos fármacos , Fluconazol/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Óleos Voláteis/química , Óleos de Plantas/química , Óleos de Plantas/farmacologia
14.
Chem Biol Interact ; 261: 56-62, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27871896

RESUMO

This work aimed to determine the chemical fingerprint of hydroethanolic extract of leaves of Caryocar coriaceum (HELCC) and the gastroprotective activity. The chemical fingerprint of HELCC was analyzed by HPLC-DAD, to quantify total phenols and flavonoids were carried out by Folin-Ciocalteu reagent and aluminum chloride assay, while in vitro antioxidant activity was evaluated by the DPPH method. The methods used to determine pharmacological activity were: gastroprotective screening test in classical models of induced acute and chronic gastric lesions and physical barrier test. Further assays were performed to demonstrate the involvement of NO, prostaglandins, ATP-dependent potassium channels, TRPV, noradrenergic α2 receptors, histamines, and opioids. The DPPH method demonstrated the antioxidant activity of the extract, in vitro, explained by the presence of polyphenols and flavonoids. Oral administration of the extract, previously dissolved in deionized water, at a dose of 100 mg/kg decreased the lesions induced by indomethacin, acidified ethanol, ethanol and acetic acid by 75.0, 72.8, 69.4 and 86.2% respectively. It was demonstrated that opioid receptors, α2-adrenergic receptors and primary afferent neurons sensitive to capsaicin were involved in the mechanism of gastric protection, in addition to the contribution of NO and prostaglandins. The results show that extract is a promising candidate for the treatment of gastric ulcers.


Assuntos
Ericales/química , Etanol/química , Extratos Vegetais/uso terapêutico , Folhas de Planta/química , Substâncias Protetoras/uso terapêutico , Úlcera Gástrica/tratamento farmacológico , Água/química , Animais , Antioxidantes/metabolismo , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Capsaicina/uso terapêutico , Cromatografia Líquida de Alta Pressão , Doença Crônica , Modelos Animais de Doenças , Feminino , Flavonoides/análise , Motilidade Gastrointestinal , Glibureto/farmacologia , Glibureto/uso terapêutico , Histamina/farmacologia , Histamina/uso terapêutico , Indometacina , Masculino , Camundongos , Muco/efeitos dos fármacos , NG-Nitroarginina Metil Éster/farmacologia , NG-Nitroarginina Metil Éster/uso terapêutico , Naloxona/farmacologia , Naloxona/uso terapêutico , Fenóis/análise , Fitoterapia , Extratos Vegetais/farmacologia , Úlcera Gástrica/patologia , Ioimbina/farmacologia , Ioimbina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA