Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Cell Endocrinol ; 588: 112199, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552944

RESUMO

Maternal diabetes may influence glucose metabolism in adult offspring, an area with limited research on underlying mechanisms. Our study explored the impact of maternal hyperglycemia during pregnancy on insulin resistance development. Adult female Sprague-Dawley rats from control and diabetic mothers were mated, and their female offspring were monitored for 150 days. The rats were euthanized for blood and muscle samples. Maternal diabetes led to heightened insulin levels, increased HOMA-IR, elevated triglycerides, and a raised TyG index in adult offspring. Muscle samples showed a decreased protein expression of AMPK, PI3K, MAPK, DRP1, and MFF. These changes induced intergenerational metabolic programming in female pups, resulting in insulin resistance, dyslipidemia, and glucose intolerance by day 150. Findings highlight the offspring's adaptation to maternal hyperglycemia, involving insulin resistance, metabolic alterations, the downregulation of insulin signaling sensors, and disturbed mitochondrial morphology. Maintaining maternal glycemic control emerges as crucial in mitigating diabetes-associated disorders in adult offspring.


Assuntos
Diabetes Mellitus Experimental , Diabetes Gestacional , Resistência à Insulina , Insulina , Músculo Esquelético , Fenótipo , Efeitos Tardios da Exposição Pré-Natal , Ratos Sprague-Dawley , Transdução de Sinais , Animais , Feminino , Gravidez , Insulina/metabolismo , Insulina/sangue , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Diabetes Gestacional/metabolismo , Diabetes Gestacional/patologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Ratos , Mitocôndrias/metabolismo , Glicemia/metabolismo
2.
Oxid Med Cell Longev ; 2022: 3710449, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360199

RESUMO

Glioblastoma multiforme (GBM) is a notably lethal brain tumor associated with high proliferation rate and therapeutic resistance, while currently effective treatment options are still lacking. Imidazo[1,2-a]pyridine derivatives and organoselenium compounds are largely used in medicinal chemistry and drug development. This study is aimed at further investigating the antitumor mechanism of IP-Se-06 (3-((2-methoxyphenyl)selanyl)-7-methyl-2-phenylimidazol[1,2-a]pyridine), a selenylated imidazo[1,2-a]pyridine derivative in glioblastoma cells. IP-Se-06 exhibited high cytotoxicity against A172 cells (IC50 = 1.8 µM) and selectivity for this glioblastoma cell. The IP-Se-06 compound has pharmacological properties verified in its ADMET profile, especially related to blood-brain barrier (BBB) permeability. At low concentration (1 µM), IP-Se-06 induced intracellular redox state modulation with depletion of TrxR and GSH levels as well as inhibition of NRF2 protein. IP-Se-06 also decreased mitochondrial membrane potential, induced cytochrome c release, and chromatin condensation. Furthermore, IP-Se-06 induced apoptosis by decreasing levels of Bcl-xL while increasing levels of γ-H2AX and p53 proteins. Treatment with IP-Se-06 induced cell cycle arrest and showed antiproliferative effect by inhibition of Akt/mTOR/HIF-1α and ERK 1/2 signaling pathways. In addition, IP-Se-06 displayed significant inhibition of p38 MAPK and p-p38, leading to inhibition of inflammasome complex proteins (NLRP3 and caspase-1) in glioblastoma cells. These collective findings demonstrated that IP-Se-06 is a bioactive molecule that can be considered a candidate for the development of a novel drug for glioblastoma treatment.


Assuntos
Glioblastoma , Apoptose , Linhagem Celular Tumoral , Glioblastoma/patologia , Humanos , Oxirredução , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridinas/farmacologia , Piridinas/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo
3.
Nanomedicine (Lond) ; 15(5): 511-525, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32077357

RESUMO

Aim: This paper aims to investigate a doxorubicin (DOX) chronic kidney disease rat model using magnetic nanoparticles (MNPs) associated with the alternate current biosusceptometry (ACB) to analyze its different perfusion profiles in both healthy and DOX-injured kidneys. Materials & methods: We used the ACB to detect the MNP kidney perfusion in vivo. Furthermore, we performed biochemical and histological analyses, which sustained results obtained from the ACB system. We also studied the MNP biodistribution. Results: We found that DOX kidney injury alters the MNPs' kidney perfusion. These changes became more intense as the disease progressed. Moreover, DOX has an important effect on MNP biodistribution as the disease evolved. Conclusion: This study provides new applications of MNPs in nephrology, instrumentation, pharmacology, physiology and nanomedicine.


Assuntos
Doxorrubicina/efeitos adversos , Rim/efeitos dos fármacos , Nanopartículas de Magnetita , Animais , Rim/fisiopatologia , Ratos , Distribuição Tecidual
4.
Front Physiol ; 10: 266, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30941056

RESUMO

Glycoprotein hormone receptors mediate a diverse range of physiological functions in vertebrate and invertebrate organisms. The heterodimeric glycoprotein hormone GPA2/GPB5 and its receptor LGR1, constitute a recently discovered invertebrate neuroendocrine signaling system that remains to be functionally characterized. We previously reported that LGR1 is expressed in the testes of adult Aedes aegypti mosquitoes, where its immunoreactivity is particularly regionalized. Here, we show that LGR1 immunoreactivity is associated with the centriole adjunct of spermatids and is observed transiently during spermatogenesis in mosquitoes, where it may act to mediate the regulation of flagellar development. RNA interference to downregulate LGR1 expression was accomplished by feeding mosquito larvae with bacteria that produced LGR1-specific dsRNA, which led to defects in spermatozoa, characterized with shortened flagella. LGR1 knockdown mosquitoes also retained ∼60% less spermatozoa in reproductive organs and demonstrated reduced fertility compared to controls. To date, the endocrine regulation of spermatogenesis in mosquitoes remains an understudied research area. The distribution of LGR1 and detrimental effects of its knockdown on spermatogenesis in A. aegypti indicates that this heterodimeric glycoprotein hormone signaling system contributes significantly to the regulation of male reproductive biology in this important disease-vector.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA