Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Molecules ; 27(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35889401

RESUMO

Enzymatic biocatalysis is a sustainable technology. Enzymes are versatile and highly efficient biocatalysts, and have been widely employed due to their biodegradable nature. However, because the three-dimensional structure of these enzymes is predominantly maintained by weaker non-covalent interactions, external conditions, such as temperature and pH variations, as well as the presence of chemical compounds, can modify or even neutralize their biological activity. The enablement of this category of processes is the result of the several advances in the areas of molecular biology and biotechnology achieved over the past two decades. In this scenario, metal-organic frameworks (MOFs) are highlighted as efficient supports for enzyme immobilization. They can be used to 'house' a specific enzyme, providing it with protection from environmental influences. This review discusses MOFs as structures; emphasizes their synthesis strategies, properties, and applications; explores the existing methods of using immobilization processes of various enzymes; and lists their possible chemical modifications and combinations with other compounds to formulate the ideal supports for a given application.


Assuntos
Estruturas Metalorgânicas , Biocatálise , Biotecnologia , Enzimas Imobilizadas/química , Estruturas Metalorgânicas/química , Temperatura
4.
Int J Biol Macromol ; 181: 1124-1170, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33864867

RESUMO

Chitosan is one of the most abundant natural polymer worldwide, and due to its inherent characteristics, its use in industrial processes has been extensively explored. Because it is biodegradable, biocompatible, non-toxic, hydrophilic, cheap, and has good physical-chemical stability, it is seen as an excellent alternative for the replacement of synthetic materials in the search for more sustainable production methodologies. Thus being, a possible biotechnological application of Chitosan is as a direct support for enzyme immobilization. However, its applicability is quite specific, and to overcome this issue, alternative pretreatments are required, such as chemical and physical modifications to its structure, enabling its use in a wider array of applications. This review aims to present the topic in detail, by exploring and discussing methods of employment of Chitosan in enzymatic immobilization processes with various enzymes, presenting its advantages and disadvantages, as well as listing possible chemical modifications and combinations with other compounds for formulating an ideal support for this purpose. First, we will present Chitosan emphasizing its characteristics that allow its use as enzyme support. Furthermore, we will discuss possible physicochemical modifications that can be made to Chitosan, mentioning the improvements obtained in each process. These discussions will enable a comprehensive comparison between, and an informed choice of, the best technologies concerning enzyme immobilization and the application conditions of the biocatalyst.


Assuntos
Biocatálise , Quitosana/química , Enzimas Imobilizadas/química , Enzimas/química , Biotecnologia/tendências , Concentração de Íons de Hidrogênio , Lipase/química , Polímeros/química
5.
Artigo em Inglês | MEDLINE | ID: mdl-32695765

RESUMO

In this communication, it was evaluated the production of fatty acid ethyl ester (FAAE) from the free fatty acids of babassu oil catalyzed by lipase from Rhizomucor miehei (RML) immobilized on magnetic nanoparticles (MNP) coated with 3-aminopropyltriethoxysilane (APTES), Fe3O4@APTES-RML or RML-MNP for short. MNPs were prepared by co-precipitation coated with 3-aminopropyltriethoxysilane and used as a support to immobilize RML (immobilization yield: 94.7 ± 1.0%; biocatalyst activity: 341.3 ± 1.2 U p -NPB/g), which were also activated with glutaraldehyde and then used to immobilize RML (immobilization yield: 91.9 ± 0.2%; biocatalyst activity: 199.6 ± 3.5 U p -NPB/g). RML-MNP was characterized by X-Ray Powder Diffraction (XRPD), Fourier Transform-Infrared (FTIR) spectroscopy and Scanning Electron Microscope (SEM), proving the incorporation and immobilization of RML on the APTES matrix. In addition, the immobilized biocatalyst presented at 60°C a half-life 16-19 times greater than that of the soluble lipase in the pH range 5-10. RML and RML-MNP showed higher activity at pH 7; the immobilized enzyme was more active than the free enzyme in the pH range (5-10) analyzed. For the production of fatty acid ethyl ester, under optimal conditions [40°C, 6 h, 1:1 (FFAs/alcohol)] determined by the Taguchi method, it was possible to obtain conversion of 81.7 ± 0.7% using 5% of RML-MNP.

6.
Bioprocess Biosyst Eng ; 43(12): 2253-2268, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32725440

RESUMO

In this study, the modulation of enzymatic biocatalysts were developed by the use of lipase B from Candida antarctica covalently immobilized on an eco-friendly support, cashew apple bagasse, activated with 10% glycidol-ethylenediamine-glutaraldehyde (GEG) under different immobilization strategies (5 mM or 100 mM ionic strength and in absence or presence of 0.5% (v/v) Triton X-100). The biocatalysts were characterized for thermal and organic solvents stabilities and compared with the soluble enzyme. The biocatalysts were then applied to the hydrolysis of the rac-indanyl acetate (2:1 ratio enzyme/substrate) at pH 7.0 and 30 °C for 24 h. For all the strategies evaluated, GEG promoted kinetic resolution of rac-indanyl acetate with maximum conversion (50%) and led to (R)-indanol with excellent enantiomeric excess (97%), maintaining the maximum conversion for five consecutive cycles of hydrolysis. Therefore, the use of cashew apple bagasse has proved to be a promising eco-friendly support for enzyme immobilization, since it resulted in stable biocatalysts for enzymatic kinetic resolution.


Assuntos
Acetatos/química , Basidiomycota/enzimologia , Proteínas Fúngicas/química , Lipase/química , Anacardium/metabolismo , Candida/enzimologia , Estabilidade Enzimática , Enzimas Imobilizadas/química , Etilenodiaminas/química , Glutaral/química , Concentração de Íons de Hidrogênio , Cinética , Bases de Schiff , Solventes/química , Estereoisomerismo , Temperatura , Fatores de Tempo
7.
Enzyme Microb Technol ; 138: 109560, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32527529

RESUMO

Lipase from Thermomyces lanuginosus (TLL) was immobilized onto a novel heterofunctional support, divinyl sulfone (DVS) superparamagnetic nanoparticles (SPMNs) functionalized with polyethyleneimine (PEI). Particle size and zeta potential measurements, elemental analysis, X-ray powder diffraction, magnetic measurements, and infrared spectroscopy analysis were used to characterize the TLL preparations. At pH 10, it was possible to achieve 100 % of immobilization yield in 1 h. The immobilization pH gives TLL preparations with different stabilities; indeed the TLL preparation immobilized at pH 5.0 was the most stable during the thermal inactivation at all pH values. For the hydrolysis of racemic methyl mandelate, the nanobiocatalysts immobilized at pH 5.0 and blocked with ethylenediamine (EDA) and ethanolamine (ETA) obtained good enantioselectivities (68 % and 72 %, respectively) with high catalytic activities in the reaction medium at pH 7.0. The operational stability of the systems was evaluated in the esterification reaction of benzyl alcohol, obtaining up to 61 % conversion after the seventh reaction cycle. These results show that SPMN@PEI-DVS support is a robust strategy for the easy and rapid recovery of the nanobiocatalyst by applying a magnetic field, showing great potential for industrial applications.


Assuntos
Enzimas Imobilizadas/química , Eurotiales/enzimologia , Lipase/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Polietilenoimina/química , Sulfonas/química , Compostos de Benzil/metabolismo , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Esterificação , Etanolamina/química , Etilenodiaminas/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Lipase/metabolismo , Temperatura , Fatores de Tempo
8.
3 Biotech ; 10(6): 254, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32426206

RESUMO

In this work, the concept of lipase cocktail has been proposed in the ultrasound-assisted hydrolysis of coconut oil. Lipase from Thermomyces lanuginosus (TLL), lipase from Rhizomucor miehei (RML), and lipase B from Candida antarctica (CALB) were evaluated as biocatalysts in different combinations. The best conversion (33.66%) was achieved using only RML; however, the best lipase cocktail (75% RML and 25% CALB) proposed by the triangular response surface was used to achieve higher conversions. At the best lipase cocktail, reaction parameters [temperature, biocatalyst content and molar ratio (water/oil)] were optimized by a Central Composite Design, allowing to obtain more than 98% of conversion in the hydrolysis of coconut oil in 3 h of incubation at 37 kHz, 300 W and 45 °C by using 20% of the lipase cocktail (w/w) and a molar ratio of 7.5:1 (water/oil). The lipase cocktail retained about 50% of its initial activity after three consecutive cycles of hydrolysis. To the authors' knowledge, up to date, this communication is the first report in the literature for the ultrasound-assisted hydrolysis of coconut oil catalyzed by a cocktail of lipases. Under ultrasound irradiation, the concept of lipase cocktail was successfully applied, and this strategy could be useful for the other types of reactions using heterogeneous substrates.

9.
Int J Mol Sci ; 20(22)2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31752306

RESUMO

The synthesis of ethyl butyrate catalyzed by lipases A (CALA) or B (CALB) from Candida antarctica immobilized onto magnetic nanoparticles (MNP), CALA-MNP and CALB-MNP, respectively, is hereby reported. MNPs were prepared by co-precipitation, functionalized with 3-aminopropyltriethoxysilane, activated with glutaraldehyde, and then used as support to immobilize either CALA or CALB (immobilization yield: 100 ± 1.2% and 57.6 ± 3.8%; biocatalysts activities: 198.3 ± 2.7 Up-NPB/g and 52.9 ± 1.7 Up-NPB/g for CALA-MNP and CALB-MNP, respectively). X-ray diffraction and Raman spectroscopy analysis indicated the production of a magnetic nanomaterial with a diameter of 13.0 nm, whereas Fourier-transform infrared spectroscopy indicated functionalization, activation and enzyme immobilization. To determine the optimum conditions for the synthesis, a four-variable Central Composite Design (CCD) (biocatalyst content, molar ratio, temperature and time) was performed. Under optimized conditions (1:1, 45 °C and 6 h), it was possible to achieve 99.2 ± 0.3% of conversion for CALA-MNP (10 mg) and 97.5 ± 0.8% for CALB-MNP (12.5 mg), which retained approximately 80% of their activity after 10 consecutive cycles of esterification. Under ultrasonic irradiation, similar conversions were achieved but at 4 h of incubation, demonstrating the efficiency of ultrasound technology in the enzymatic synthesis of esters.


Assuntos
Butiratos/metabolismo , Candida/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Proteínas Fúngicas/metabolismo , Lipase/metabolismo , Nanopartículas de Magnetita/química , Biocatálise , Esterificação/fisiologia , Glutaral/metabolismo , Ondas Ultrassônicas
10.
Int J Mol Sci ; 20(16)2019 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-31426510

RESUMO

In this communication, lipase A from Candida antarctica (CALA) was immobilized by covalent bonding on magnetic nanoparticles coated with chitosan and activated with glutaraldehyde, labelled CALA-MNP, (immobilization parameters: 84.1% ± 1.0 for immobilization yield and 208.0 ± 3.0 U/g ± 1.1 for derivative activity). CALA-MNP biocatalyst was characterized by X-ray Powder Diffraction (XRPD), Fourier Transform Infrared (FTIR) spectroscopy, Thermogravimetry (TG) and Scanning Electron Microscope (SEM), proving the incorporation of magnetite and the immobilization of CALA in the chitosan matrix. Besides, the immobilized biocatalyst showed a half-life 8-11 times higher than that of the soluble enzyme at pH 5-9. CALA showed the highest activity at pH 7, while CALA-MNP presented the highest activity at pH 10. The immobilized enzyme was more active than the free enzyme at all studied pH values, except pH 7.


Assuntos
Candida/enzimologia , Quitosana/química , Lipase/metabolismo , Nanopartículas de Magnetita/química , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Proteínas Fúngicas/metabolismo
11.
Biotechnol Adv ; 37(5): 746-770, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30974154

RESUMO

Lipases are the most widely used enzymes in biocatalysis, and the most utilized method for enzyme immobilization is using hydrophobic supports at low ionic strength. This method allows the one step immobilization, purification, stabilization, and hyperactivation of lipases, and that is the main cause of their popularity. This review focuses on these lipase immobilization supports. First, the advantages of these supports for lipase immobilization will be presented and the likeliest immobilization mechanism (interfacial activation on the support surface) will be revised. Then, its main shortcoming will be discussed: enzyme desorption under certain conditions (such as high temperature, presence of cosolvents or detergent molecules). Methods to overcome this problem include physical or chemical crosslinking of the immobilized enzyme molecules or using heterofunctional supports. Thus, supports containing hydrophobic acyl chain plus epoxy, glutaraldehyde, ionic, vinylsulfone or glyoxyl groups have been designed. This prevents enzyme desorption and improved enzyme stability, but it may have some limitations, that will be discussed and some additional solutions will be proposed (e.g., chemical amination of the enzyme to have a full covalent enzyme-support reaction). These immobilized lipases may be subject to unfolding and refolding strategies to reactivate inactivated enzymes. Finally, these biocatalysts have been used in new strategies for enzyme coimmobilization, where the most stable enzyme could be reutilized after desorption of the least stable one after its inactivation.


Assuntos
Biotecnologia/métodos , Enzimas Imobilizadas/química , Lipase/química , Reagentes de Ligações Cruzadas/química , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Glutaral/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Lipase/metabolismo , Solventes/química
12.
Int J Biol Macromol ; 130: 798-809, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30817969

RESUMO

A novel heterofunctional support for enzyme immobilization, chitosan-divinyl sulfone, was assessed in this study. The activation of chitosan with DVS was carried out at three different pHs (10.0, 12.5 and 14.0) and a Candida antarctica Lipase B (CALB) was selected as the model enzyme. After immobilization, the biocatalysts were incubated under alkaline conditions in a buffer to facilitate the multipoint covalent attachment, followed by incubation in ethylenediamine (EDA) aiming at blocking the remaining reactive groups. The highest thermal stability was obtained when pH 10.0 was used during support activation. These results were shown to be better than those obtained when using glutaraldehyde as the support-activating reagent. Subsequently, the immobilization pH was investigated (5.0, 7.0 and 10.0) prior to alkaline incubation, with the highest enzyme stability levels found at pH 10.0. Finally, the selected biocatalyst was used in the hydrolysis of ethyl hexanoate and presented an activity of 14,520.37 U/g of immobilized lipase at pH 5.0. These results show that chitosan activated with divinyl sulfone is a very promising support for enzyme immobilization and the proposed protocol is able to successfully improve enzyme stability.


Assuntos
Quitosana/química , Enzimas Imobilizadas , Proteínas Fúngicas , Lipase , Sulfonas/química , Ativação Enzimática , Estabilidade Enzimática , Enzimas Imobilizadas/química , Análise de Elementos Finitos , Proteínas Fúngicas/química , Concentração de Íons de Hidrogênio , Hidrólise , Lipase/química , Estrutura Molecular , Nanopartículas/química , Nanopartículas/ultraestrutura , Ligação Proteica , Análise Espectral , Termogravimetria
13.
Mol Biol Rep ; 46(1): 597-608, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30511303

RESUMO

In this work, the synthesis of two fruit flavor esters, namely methyl and ethyl butyrate, by lipase from Rhizomucor miehei immobilized onto chitosan in the presence of the surfactant sodium dodecyl sulfate SDS was investigated. In the optimized conditions, maximum esterification yield for ethyl butyrate and methyl butyrate was (92 ± 1%) and (89 ± 1%), respectively. Esterification yields for both reactions were comparable or even superior to the ones achieved when the synthesis was catalyzed by a commercial enzyme, Lipozyme®, at the same reaction conditions. For ethyl butyrate, the developed biocatalyst was used for seven consecutive cycles of reaction with retention of its catalytic activity. For methyl butyrate synthesis the biocatalyst was used for four consecutive cycles without loss of its catalytic activity. The results show that chitosan may be employed in obtaining biocatalysts with high catalytic efficiency and can successfully replace the currently commercial available biocatalysts.


Assuntos
Butiratos/química , Rhizomucor/metabolismo , Quitosana , Enzimas Imobilizadas , Esterificação , Ésteres/síntese química , Aromatizantes/síntese química , Proteínas Fúngicas , Cinética , Lipase/metabolismo , Lipase/farmacologia , Dodecilsulfato de Sódio/química , Tensoativos
14.
Biotechnol Prog ; 34(4): 878-889, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29536666

RESUMO

Novozyme 435, which is a commercial immobilized lipase B from Candida antarctica (CALB), has been proven to be inadequate for the kinetic resolution of rac-indanyl acetate. As it has been previously described that different immobilization protocols may greatly alter lipase features, in this work, CALB was covalently immobilized on epoxy Immobead-350 (IB-350) and on glyoxyl-agarose to ascertain if better kinetic resolution would result. Afterwards, all CALB biocatalysts were utilized in the hydrolytic resolution of rac-indanyl acetate and rac-(chloromethyl)-2-(o-methoxyphenoxy) ethyl acetate. After optimization of the immobilization protocol on IB-350, its loading capacity was 150 mg protein/g dried support. Furthermore, the CALB-IB-350 thermal and solvent stabilities were higher than that of the soluble enzyme (e.g., by a 14-fold factor at pH 5-70°C and by a 11-fold factor in dioxane 30%-65°C) and that of the glyoxyl-agarose-CALB (e.g., by a 12-fold factor at pH 10-50°C and by a 21-fold factor in dioxane 30%-65°C). The CALB-IB-350 preparation (with 98% immobilization yield and activity versus p-nitrophenyl butyrate of 6.26 ± 0.2 U/g) was used in the hydrolysis of rac-indanyl acetate using a biocatalyst/substrate ratio of 2:1 and a pH value of 7.0 at 30°C for 24 h. The conversion obtained was 48% and the enantiomeric excess of the product (e.e.p ) was 97%. These values were much higher than the ones obtained with Novozyme 435, 13% and 26% of conversion and e.e.p, respectively. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:878-889, 2018.


Assuntos
Candida/enzimologia , Enzimas Imobilizadas/metabolismo , Proteínas Fúngicas/metabolismo , Lipase/metabolismo , Catálise , Concentração de Íons de Hidrogênio , Cinética
15.
Appl Biochem Biotechnol ; 184(4): 1263-1285, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29019010

RESUMO

Lipase from Rhizomucor miehei (RML) was immobilized onto chitosan support in the presence of some surfactants added at low levels using two different strategies. In the first approach, the enzyme was immobilized in the presence of surfactants on chitosan supports previously functionalized with glutaraldehyde. In the second one, after prior enzyme adsorption on chitosan beads in the presence of surfactants, the complex chitosan beads-enzyme was then cross-linked with glutaraldehyde. The effects of surfactant concentrations on the activities of free and immobilized RML were evaluated. Hexadecyltrimethylammonium bromide (CTAB) promoted an inhibition of enzyme activity while the nonionic surfactant Triton X-100 caused a slight increase in the catalytic activity of the free enzyme and the derivatives produced in both methods of immobilization. The best derivatives were achieved when the lipase was firstly adsorbed on chitosan beads at 4 °C for 1 h, 220 rpm followed by cross-link the complex chitosan beads-enzyme with glutaraldehyde 0.6% v.v-1 at pH 7. The derivatives obtained under these conditions showed high catalytic activity and excellent thermal stability at 60° and 37 °C. The best derivative was also evaluated in the synthesis of two flavor esters namely methyl and ethyl butyrate. At non-optimized conditions, the maximum conversion yield for methyl butyrate was 89%, and for ethyl butyrate, the esterification yield was 92%. The results for both esterifications were similar to those obtained when the commercial enzyme Lipozyme® and free enzyme were used in the same reaction conditions and higher than the one achieved in the absence of the selected surfactant.


Assuntos
Quitosana/sangue , Enzimas Imobilizadas/química , Proteínas Fúngicas/química , Lipase/química , Rhizomucor/enzimologia , Tensoativos/química , Estabilidade Enzimática , Concentração de Íons de Hidrogênio
16.
Appl Biochem Biotechnol ; 184(1): 182-196, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28664524

RESUMO

The aim of this paper was to evaluate different strategies of chitosan activation using cross-linking reagent like glycidol, epichlorohydrin, and glutaraldehyde for Thermomyces lanuginosus lipase (TLL) immobilization. Operational activity and stability by esterification of oleic acid with ethanol and thermal inactivation using these derivatives were investigated. Derivative obtained by sequentially activation with glycidol, ethylenediamine, and glutaraldehyde and subsequent TLL immobilization showed the best performance, with high hydrolytic activity value. Its stability was 15-fold higher than solubilized TLL in the evaluated inactivation conditions (60 °C, 25 mM sodium phosphate buffer pH 7). After 5 cycles of oleic acid esterification, only a few percentage of its conversion has reduced. On the other hand, glycidol-activated chitosan derivative showed very low hydrolytic activity value. Epichlorohydrin-activated chitosan derivative showed regular hydrolytic activity value. Both derivatives showed low immobilization yields. Operational stability of this last derivative was very low, where after the first cycle of oleic acid esterification, only 56% of its initial conversion was obtained. Graphical Abstract ᅟ.


Assuntos
Ascomicetos/enzimologia , Quitosana , Enzimas Imobilizadas/metabolismo , Lipase/metabolismo , Estabilidade Enzimática , Esterificação , Temperatura Alta , Microscopia Eletrônica de Varredura
17.
Molecules ; 22(12)2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215558

RESUMO

Enzymes serve as biocatalysts for innumerable important reactions, however, their application has limitations, which can in many cases be overcome by using appropriate immobilization strategies. Here, a new support for immobilizing enzymes is proposed. This hybrid organic-inorganic support is composed of chitosan-a natural, nontoxic, biodegradable, and edible biopolymer-and sodium polyphosphate as the inorganic component. Lipase B from Candida antarctica (CALB) was immobilized on microspheres by encapsulation using these polymers. The characterization of the composites (by infrared spectroscopy, thermogravimetric analysis, and confocal Raman microscopy) confirmed the hybrid nature of the support, whose external part consisted of polyphosphate and core was composed of chitosan. The immobilized enzyme had the following advantages: possibility of enzyme reuse, easy biocatalyst recovery, increased resistance to variations in temperature (activity declined from 60 °C and the enzyme was inactivated at 80 °C), and increased catalytic activity in the transesterification reactions. The encapsulated enzymes were utilized as biocatalysts for transesterification reactions to produce the compound responsible for the aroma of jasmine.


Assuntos
Compostos de Benzil/síntese química , Quitosana/química , Enzimas Imobilizadas/química , Proteínas Fúngicas/química , Lipase/química , Polifosfatos/química , Adsorção , Biocatálise , Candida/química , Candida/enzimologia , Enzimas Imobilizadas/isolamento & purificação , Esterificação , Proteínas Fúngicas/isolamento & purificação , Lipase/isolamento & purificação , Microesferas , Análise Espectral/métodos
18.
Biotechnol Rep (Amst) ; 14: 16-26, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28459004

RESUMO

The objective of this new paper was to evaluate the enzymatic esterification reaction conducted in supercritical or near-critical CO2, catalyzed by immobilized lipase B from Candida antarctica (CALB). The biocatalyst was prepared through the immobilization of CALB by covalent attachment using chitosan sequentially activated with Glycidol, ethylenediamine (EDA) and glutaraldehyde as support. In order to determine the best operational conditions of the esterification reaction (1: 1 (alcohol-acid); biocatalyst content, 10% (by substrate mass); 45 °C), an experimental design (23) was conducted to evaluate the effects of the following parameters: alcohol to oil molar ratios, reaction time and temperature. The maximum loading of chitosan was 20 mg protein/g support, and the thermal and solvent stability of the new biocatalyst was higher than that of the CALB-GX (by a 26-fold factor), CALB-OC (by a 53-fold factor) and Novozym 435 (by a 3-fold factor). The maximum conversion was 46.9% at a temperature of 29.9 °C, ethanol to oleic acid molar ratio equal to 4.50:1, and a reaction time of 6.5 h. Additionally, the removal of water from the medium, by using molecular sieves, promoted a 16.0% increase in the conversion of oleic acid into ethyl esters.

19.
J Mater Chem B ; 5(36): 7461-7490, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32264223

RESUMO

This review discusses the possible roles of polyethylenimine (PEI) in the design of improved immobilized biocatalysts from diverse perspectives. This includes their use to activate supports and immobilize enzymes via ion exchange, as well as to improve immobilized enzymes by coating with PEI. PEI is a polymer containing primary, secondary and tertiary amino groups, having a strong anion exchange capacity under a broad range of conditions, and the capability to chemically react with different moieties on either an enzyme or a support. Also, as a multifunctional polymer, it has been modified stepwise to introduce different functionalities into the same polymer. This polymer (in combination with other anionic ones) permits the generation of "saline" environments around enzyme molecules, improving enzyme stability in the presence of hydrophobic compounds. The use of PEI as a physical glue useful to crosslink enzyme subunits in multimeric enzymes, monomeric enzymes immobilized via physical interactions or production of enzyme multilayers will be specially emphasized as new open avenues for enzyme coimmobilization. The coimmobilization of enzymes and cofactors using PEI may become one of the future developments allowed through an adequate use of this polymer and new pathways towards the design of enzyme combi-catalysts for their use in cascade reactions. Some unexplored but suggested uses derived from the properties of PEI are also proposed in the review, like the use of the buffering power of this multifunctional polymer to avoid pH gradients inside biocatalyst particles. Thus, although PEI has been a largely popular polymer in biocatalyst design, it looks like a long and in some cases almost unexplored road lies ahead.

20.
Enzyme Microb Technol ; 90: 35-44, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27241290

RESUMO

Industrial use of Novozym 435 in synthesis of structured lipids and biodiesel via alcoholysis is limited by mass transfer effects of the glycerides through immobilized enzymes and its low operational stability under operation conditions. To better understand this, differently modified Novozym 435 preparations, differing in their surface nature and in their interactions with reactants, have been compared in the alcoholysis of Camelina sativa oil. The three modifications performed have been carried out under conditions where all exposed groups of the enzyme have been modified. These modifications were: 2,4,6-trinitrobenzensulfonic acid (Novo-TNBS), ethylendiamine (Novo-EDA) and polyethylenimine (Novo-PEI). Changes in their operational performance are analyzed in terms of changes detected by scan electron microscopy in the support morphology. The hydrophobic nature of the TNBS accelerates the reaction rate; t-ButOH co-solvent swells the macroporous acrylic particles of Lewatit VP OC 1600 in all biocatalysts, except in the case of Novo-PEI. This co-solvent only increases the maximal conversions obtained at 24h using the modified biocatalysts. t-ButOH reduces enzyme inactivation by alcohol and water. In a co-solvent system, these four biocatalysts remain fully active after 14 consecutive reaction cycles of 24h, but only Novo-TNBS yields maximal conversion before cycle 5. Some deposits on biocatalyst particles could be appreciated during reuses, and TNBS derivatization diminishes the accumulation of product deposits on the catalyst surface. Most particles of commercial Novozym(®) 435 are broken after operation for 14 reaction cycles. The broken particles are fully active, but they cause problems of blockage in filtration operations and column reactors. The three derivatizations studied make the matrix particles more resistant to rupture.


Assuntos
Lipase/química , Lipase/metabolismo , Álcoois/química , Álcoois/metabolismo , Biocatálise , Biotecnologia , Estabilidade Enzimática , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Enzimas Imobilizadas/ultraestrutura , Etilenodiaminas/química , Proteínas Fúngicas , Lipase/ultraestrutura , Microscopia Eletrônica de Varredura , Óleos de Plantas/química , Óleos de Plantas/metabolismo , Polietilenoimina/química , Ácido Trinitrobenzenossulfônico/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA