Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1090787, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36876091

RESUMO

Multidrug-resistant (MDR) bacterial infections have gained increasing attention due to the high incidence rates and high mortality, especially for the carbapenem-resistant Klebsiella pneumoniae (CRKP) infection that can cause severe complications (e.g., pneumonia and sepsis) in multiple organs. Therefore, the development of new antibacterial agents against CRKP is imperative. Inspired by natural plant antibacterial agents with broad-spectrum antibacterial properties, the antibacterial/biofilm activity of eugenol (EG) on CRKP and their underlying mechanisms are investigated in our work. It is found that EG exhibits remarkable inhibitory effects on planktonic CRKP in a dose-dependent fashion. Meanwhile, the destruction of membrane integrity induced by the formation of reactive oxygen species (ROS) and glutathione reduction results in the leakage of bacterial cytoplasmic components, including DNA, ß-galactosidase, and protein. Moreover, when EG contacts with bacterial biofilm, the whole thickness of the dense biofilm matrix decreases, and the integrity is destroyed. Overall, this work verified that EG could eliminate CRKP via ROS-induced membrane rupture, which offers vital evidence to explain the antibacterial ability of EG against CRKP.

2.
Carbohydr Polym ; 300: 120226, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36372471

RESUMO

Radical pelvic surgery is commonly accompanied by the risk of postoperative erectile dysfunction induced by cavernous nerve injury (CNI-ED). The strategy of using adipose mesenchymal stem cell-derived exosomes (ADSC-Exo) to treat neurodegenerative diseases has shown promising results. However, it remains challenging to prolong the retention of unbound ADSC-Exo in damaged tissues to exert therapeutic effects. Herein, we develop a novel injectable thermo-sensitive hydroxyethyl chitosan/sodium ß-glycerophosphate hydrogel (HG) encapsulating ADSC-Exo (HG@Exo) to manage CNI-ED. The HG exhibits excellent injectability, structural stability, and body temperature sensitivity. In vivo assessment demonstrates that the designed ADSC-Exo-loaded HG hydrogel enhances the retention of ADSC-Exo and displays a slow release. Furthermore, when HG@Exo is applied to the site of nerve injury, erectile function in the bilateral cavernous nerve injury rat model is significantly improved. Thus, our finding indicates that the developed bioactive hydrogel presents a promising strategy for the effective management of CNI-ED.


Assuntos
Exossomos , Masculino , Ratos , Animais , Pênis/lesões , Pênis/inervação , Hidrogéis/uso terapêutico , Ratos Sprague-Dawley , Modelos Animais de Doenças
3.
J Nanobiotechnology ; 20(1): 321, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35836267

RESUMO

Enterococcus faecalis (E. faecalis) biofilm-associated persistent endodontic infections (PEIs) are one of the most common tooth lesions, causing chronic periapical periodontitis, root resorption, and even tooth loss. Clinical root canal disinfectants have the risk of damaging soft tissues (e.g., mucosa and tongue) and teeth in the oral cavity, unsatisfactory to the therapy of PEIs. Nanomaterials with remarkable antibacterial properties and good biocompatibility have been developed as a promising strategy for removing pathogenic bacteria and related biofilm. Herein, carbon dots (CDs) derived from fucoidan (FD) are prepared through a one-pot hydrothermal method for the treatment of PEIs. The prepared FDCDs (7.15 nm) with sulfate groups and fluorescence property are well dispersed and stable in water. Further, it is found that in vitro FDCDs display excellent inhibiting effects on E. faecalis and its biofilm by inducing the formation of intracellular and extracellular reactive oxygen species and altering bacterial permeability. Importantly, the FDCDs penetrated the root canals and dentinal tubules, removing located E. faecalis biofilm. Moreover, the cellular assays show that the developed FDCDs have satisfactory cytocompatibility and promote macrophage recruitment. Thus, the developed FDCDs hold great potential for the management of PEIs.


Assuntos
Enterococcus faecalis , Irrigantes do Canal Radicular , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Carbono , Polissacarídeos , Irrigantes do Canal Radicular/farmacologia , Irrigantes do Canal Radicular/uso terapêutico , Hipoclorito de Sódio/farmacologia , Hipoclorito de Sódio/uso terapêutico
4.
J Nanobiotechnology ; 20(1): 289, 2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35717234

RESUMO

Inorganic nanoparticles (INPs) have been paid great attention in the field of oncology in recent past years since they have enormous potential in drug delivery, gene delivery, photodynamic therapy (PDT), photothermal therapy (PTT), bio-imaging, driven motion, etc. To overcome the innate limitations of the conventional INPs, such as fast elimination by the immune system, low accumulation in tumor sites, and severe toxicity to the organism, great efforts have recently been made to modify naked INPs, facilitating their clinical application. Taking inspiration from nature, considerable researchers have exploited cell membrane-camouflaged INPs (CMCINPs) by coating various cell membranes onto INPs. CMCINPs naturally inherit the surface adhesive molecules, receptors, and functional proteins from the original cell membrane, making them versatile as the natural cells. In order to give a timely and representative review on this rapidly developing research subject, we highlighted recent advances in CMCINPs with superior unique merits of various INPs and natural cell membranes for cancer therapy applications. The opportunity and obstacles of CMCINPs for clinical translation were also discussed. The review is expected to assist researchers in better eliciting the effect of CMCINPs for the management of tumors and may catalyze breakthroughs in this area.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Fotoquimioterapia , Membrana Celular , Humanos , Hipertermia Induzida/métodos , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fototerapia/métodos
5.
Front Bioeng Biotechnol ; 10: 884291, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35445004

RESUMO

Nano-hydroxyapatite (nHA) has been widely applied as a tissue-engineering biomaterial and interacted with osteoblasts/stem cells to repair bone defects. In addition, T cells that coexist with osteoblasts/stem cells in the bone modulate the regulation of osteoimmunology by cytokine formation. However, the effects of nHA on T cells and the following regulatory interplay on osteogenic differentiation have been rarely examined. In this work, the physicochemical properties of needle-like nHA are characterized by field emission scanning electron microscopy, zeta potential, Fourier transform-infrared and X-ray diffraction. It is found that as the concentration of nHA increases, the proliferation of T cells gradually increases, and the proportion of apoptotic T cells decreases. The percentage of CD4+ T cells is higher than that of CD8+ T cells under the regulation of needle-like nHA. Furthermore, the supernatant of T cells co-cultured with nHA significantly inhibits the osteogenic differentiation of MC3T3-E1 by downregulating the formation of alkaline phosphatase and calcium nodule compared with the supernatant of nHA. Thus, our findings provide new insight into the nHA-mediated T cell and osteoblast interactions.

6.
J Nanobiotechnology ; 20(1): 138, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35300702

RESUMO

Unintended pregnancy is a global issue with serious ramifications for women, their families, and society, including abortion, infertility, and maternal death. Although existing contraceptive strategies have been widely used in people's lives, there have not been satisfactory feedbacks due to low contraceptive efficacy and related side effects (e.g., decreased sexuality, menstrual cycle disorder, and even lifelong infertility). In recent years, biomaterials-based long-acting reversible contraception has received increasing attention from the viewpoint of fundamental research and practical applications mainly owing to improved delivery routes and controlled drug delivery. This review summarizes recent progress in advanced biomaterials for long-acting reversible contraception via various delivery routes, including subcutaneous implant, transdermal patch, oral administration, vaginal ring, intrauterine device, fallopian tube occlusion, vas deferens contraception, and Intravenous administration. In addition, biomaterials, especially nanomaterials, still need to be improved and prospects for the future in contraception are mentioned.


Assuntos
Anticoncepcionais Femininos , Dispositivos Intrauterinos , Contracepção Reversível de Longo Prazo , Materiais Biocompatíveis , Anticoncepção , Anticoncepcionais Femininos/uso terapêutico , Feminino , Humanos , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA