Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Cybern ; 54(3): 1972-1983, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37738198

RESUMO

This article proposes a novel event-triggered second-order sliding mode (SOSM) control algorithm using the small-gain theorems. The developed algorithm has global event property in aspects of the triggering time intervals. First, an SOSM controller is designed related to the sampling error of states, and it is proved that the closed-loop system is finite-time input-to-state stable (FTISS) with the sampling error via utilizing the small-gain theorems. Second, combined with the constructed SOSM controller, a new triggering mechanism is proposed depending on the sampling error by designing the appropriate FTISS gain condition. Third, the practical finite-time stability of the closed-loop system is verified. It is shown that the minimum triggering time interval is always a positive value in the whole state space. Finally, the simulation results demonstrate the effectiveness of the developed control method.

2.
Polymers (Basel) ; 11(2)2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30960266

RESUMO

The effect of the electric field on the conformational properties of the protein 1BBL was investigated by molecular dynamics simulations. Our simulation results clearly capture the structural transitions of the protein sample from helix to turn or random coil conformation induced by the increasing strength of the electric field. During our analysis, we found that the conformational stability is weakened, and the protein sample is stretched as an unfolded structure when it was exposed in a sufficiently high electric field. The characteristic time when the jump occurs in the time evolution curves of root mean square deviation (RMSD) and radius of gyration Rg decreases with increasing electric strength, which demonstrates the rapidly conformational transition that occurs. The number of intra-protein hydrogen bonds, which is the key factor for stabilizing the protein structure, is related to the overall size of the protein. The value of the dipole moment and characteristic time are both influenced by the strength, but are independent of the direction of the external field. The protein sample becomes rotated with the electric field direction. These conclusions provide a theoretical realization of understanding the protein conformational transition in an electric field and the guidance for anticipative applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA