RESUMO
Five structures of Ge2H2 and Ge2H2+ are investigated in this study. Optimized geometries at the CCSD(T)/cc-pwCVQZ-PP level of theory were obtained. Focal point analyses were performed on these optimized geometries to determine relative energies using the CCSD(T) method with polarized basis sets up to quintuple-zeta. Energy corrections include full T and pertubative (Q) coupled-cluster effects plus anharmonic corrections to the zero-point vibrational energy. Relative ordering in energy from lowest to highest of the five Ge2H2+ structures is butterfly, germylidene, monobridged, trans, then linear. In neutral Ge2H2, the monobridged structure lies lower in energy than the germylidene structure. Fundamental vibrational frequencies and IR intensities were computed for the minima at the CCSD(T)/cc-pwCVTZ-PP level of theory to compare with experimental research. Partial atomic charges and natural bonding orbital analyses indicated that the positive charge of Ge2H2+ is contained in the region of the Ge-Ge bond.
RESUMO
High-level potential energy surfaces for three reactions of hypobromous acid with atomic hydrogen were computed at the CCSDTQ/CBS//CCSDT(Q)/complete basis set level of theory. Focal point analysis was utilized to extrapolate energies and gradients for energetics and optimizations, respectively. The H attack at Br and subsequent Br-O cleavage were found to proceed barrierlessly. The slightly submerged transition state lies -0.2 kcal mol-1 lower in energy than the reactants and produces OH and HBr. The two other studied reaction paths are the radical substitution to produce H2O and Br with a 4.0 kcal mol-1 barrier and the abstraction at hydrogen to produce BrO and H2 with an 11.2 kcal mol-1 barrier. The final product energies lie -37.2, -67.9, and -7.3 kcal mol-1 lower in energy than reactants, HOBr + H, for the sets of products OH + HBr, H2O + Br, and H2 + BrO, respectively. Additive corrections computed for the final energetics, particularly the zero-point vibrational energies and spin-orbit corrections, significantly impacted the final stationary point energies, with corrections up to 6.2 kcal mol-1.
RESUMO
We measured the rotationally resolved infrared spectra of helium solvated methyl fluoride at 3â µm and 10â µm, wherein lies C-H and C-F stretching bands, respectively. The linewidths (FWHM) were found to increase with increasing vibrational energy and range from 0.002â cm-1 in the v3 band (C-F stretch) at ~1047â cm-1, to 0.65â cm-1 in the v4 band (asymmetric C-H stretch) at ~2997â cm-1. In between these two bands we observed the lower and upper components of the Fermi triad bands (ν1/2ν2/2ν5) at ~2859 and ~2961â cm-1. We carried out Stark spectroscopy on the lower band on account of its narrower linewidths (0.04 vs. 0.14â cm-1, respectively). The objective of performing Stark spectroscopy was to see if there is any evidence for a rotational linewidth dependence on the external field strength, due to a reduced difference in between methyl fluorides rotational energy gap and the roton-gap of superfluid helium. We did not find any evidence for such an effect, which we largely attribute to the rotational energy gap not increasing significantly enough by the external field. We point to another molecule (formaldehyde) whose energy levels are predicted to show a more promising response to application of an external field.
RESUMO
Thallium chemistry is experiencing unprecedented importance. Therefore, it is valuable to characterize some of the simplest thallium compounds. Stationary points along the singlet and triplet Tl 2 H 2 potential energy surface have been characterized. Stationary point geometries were optimized with the CCSD(T)/aug-cc-pwCVQZ-PP method. Harmonic vibrational frequencies were computed at the same level of theory while anharmonic vibrational frequencies were computed at the CCSD(T)/aug-cc-pwCVTZ-PP level of theory. Final energetics were obtained with the CCSDT(Q) method. Basis sets up to augmented quintuple-zeta cardinality (aug-cc-pwCV5Z-PP) were employed to obtain energetics in order to extrapolate to the complete basis set limits using the focal point approach. Zero-point vibrational energy corrections were appended to the extrapolated energies in order to determine relative energies at 0 K. It was found that the planar dibridged isomer lies lowest in energy while the linear structure lies highest in energy. The results were compared to other group 13 M 2 H 2 (M = B, Al, Ga, In, and Tl) theoretical studies and some interesting variations are found. With respect to experiment, incompatibilities exist.
RESUMO
Criegee intermediates, formed from the ozonolysis of alkenes, are known to have a role in atmospheric chemistry, including the modulation of the oxidizing capacity of the troposphere. Although studies have been conducted since their discovery, the synthesis of these species in the laboratory has ushered in a new wave of investigations of these structures, both theoretically and experimentally. In some of these theoretical studies, high-order corrections for correlation energy are included to account for the mid multi-reference character found in these systems. Many of these studies include a focus on kinetics; therefore, the calculated energies should be accurate (<1 kcal/mol in error). In this research, we compute the enthalpies of formation for a small set of Criegee intermediates, including higher-order coupled cluster corrections for correlation energy up to coupled cluster with perturbative quintuple excitations. The enthalpies of formation for formaldehyde oxide, anti-acetaldehyde oxide, syn-acetaldehyde oxide, and acetone oxide are presented at 0 K as 26.5, 15.6, 12.2, and 0.1 kcal mol-1, respectively. Additionally, we do not recommend the coupled cluster with perturbative quadruple excitations [CCSDT(Q)] energy correction, as it is approximately twice as large as that of the coupled cluster with full quadruple excitations (CCSDTQ). Half of the CCSDT(Q) energy correction may be included as a reliable, cost-effective estimation of CCSDTQ energies for Criegee intermediates.
Assuntos
Acetaldeído , Acetona , Fenômenos Físicos , Alcenos , ÓxidosRESUMO
Butyl radicals (n-, s-, i-, and tert-butyl) are formed from the pyrolysis of stable precursors (1-pentyl nitrite, 2-methyl-1-butyl nitrite, isopentyl nitrite, and azo-tert-butane, respectively). The radicals are doped into a beam of liquid helium droplets and probed with infrared action spectroscopy from 2700 to 3125 cm-1, allowing for a low temperature measurement of the CH stretching region. The presence of anharmonic resonance polyads in the 2800-3000 cm-1 region complicates its interpretation. To facilitate spectral assignment, the anharmonic resonances are modeled with two model Hamiltonian approaches that explicitly couple CH stretch fundamentals to HCH bend overtones and combinations: a VPT2+K normal mode model based on coupled-cluster with single, double, and perturbative triple excitations [CCSD(T)] quartic force fields and a semi-empirical local mode model. Both of these computational methods provide generally good agreement with the experimental spectra.
RESUMO
Four different reaction pathways are initially located for the reaction of Cl atom plus water trimer Cl + (H2O)3 â HCl + (H2O)2OH using a standard DFT method. As found for the analogous fluorine reaction, the geometrical and energetic results for the four chlorine pathways are closely related. However, the energetics for the Cl reaction are very different from those for fluorine. In the present paper, we investigate the lowest-energy chlorine pathway using the "gold standard" CCSD(T) method in conjunction with correlation-consistent basis sets up to cc-pVQZ. Structurally, the stationary points for the water trimer reaction Cl + (H2O)3 may be compared to those for the water monomer reaction Cl + H2O and water dimer reaction Cl + (H2O)2. Based on the CCSD(T) energies, the title reaction is endothermic by 19.3 kcal mol-1, with a classical barrier height of 16.7 kcal mol-1 between the reactants and the exit complex. There is no barrier for the reverse reaction. The Clâ¯(H2O)3 entrance complex lies 5.3 kcal mol-1 below the separated reactants. The HClâ¯(H2O)2OH exit complex is bound by 8.6 kcal mol-1 relative to the separated products. The Cl + (H2O)3 reaction is somewhat similar to the analogous Cl + (H2O)2 reaction, but qualitatively different from the Cl + H2O reaction. It is reasonable to expect that the reactions between the chlorine atom and larger water clusters may be similar to the Cl + (H2O)3 reaction. The potential energy profile for the Cl + (H2O)3 reaction is radically different from that for the valence isoelectronic F + (H2O)3 system, which may be related to the different bond energies between HCl and HF.
RESUMO
The utility of high energy density materials (HEDMs) comes from their thermodynamic properties which arise from specific structural features that contribute to energy storage. Studies of such structural features seek to increase our understanding of these energy storage mechanisms in order to further enhance their properties. High-nitrogen-containing HEDMs are of particular interest because they are less toxic than traditional HEDMs. Pentazole is the largest of the nitrogen rings which has been synthesized and considered for an HEDM; however, few experimental studies exist due to the difficulty involved in the synthesis, and most previous theoretical studies employed composite methods where lower level geometries were used with higher level methods. Here, the decomposition reaction of pentazole is studied. Geometries, fundamental frequencies, and energies for each of the stationary points of the decomposition pathway are computed using ab initio methods up to CCSDT(Q). Decomposition rates are calculated over a range of temperatures using canonical transition state theory in order to determine the kinetic stability of pentazole. Based on the present results, it would be difficult for pentazole to act as an HEDM, requiring temperatures close to 200 K to achieve a suitable level of stability.
RESUMO
This article primarily discusses the utility of vibrational perturbation theory for the prediction of X-H stretching vibrations with particular focus on the specific variant, second-order vibrational perturbation theory with resonances (VPT2+K). It is written as a tutorial, reprinting most important formulas and providing numerous simple examples. It discusses the philosophy and practical considerations behind vibrational simulations with VPT2+K, including but not limited to computational method selection, cost-saving approximations, approaches to evaluating intensity, resonance identification, and effective Hamiltonian structure. Particular attention is given to resonance treatments, beginning with simple Fermi dyads and gradually progressing to arbitrarily large polyads that describe both Fermi and Darling-Dennison resonances. VPT2+K combined with large effective Hamiltonians is shown to be a reliable framework for modeling the complicated CH stretching spectra of alkenes. An error is also corrected in the published analytic formula for the VPT2 transition moment between the vibrational ground state and triply excited states.
RESUMO
The H+(CO)2 and D+(CO)2 molecular ions were investigated by infrared spectroscopy in the gas phase and in para-hydrogen matrices. In the gas phase, ions were generated in a supersonic molecular beam by a pulsed electrical discharge. After extraction into a time-of-flight mass spectrometer, the ions were mass selected and probed by infrared laser photodissociation spectroscopy in the 700 cm-1-3500 cm-1 region. Spectra were measured using either argon or neon tagging, as well as tagging with an excess CO molecule. In solid para-hydrogen, ions were generated by electron bombardment of a mixture of CO and hydrogen, and absorption spectra were recorded in the 400 cm-1-4000 cm-1 region with a Fourier-transform infrared spectrometer. A comparison of the measured spectra with the predictions of anharmonic theory at the CCSD(T)/ANO1 level suggests that the predominant isomers formed by either argon tagging or para-hydrogen isolation are higher lying (+7.8 kcal mol-1), less symmetric isomers, and not the global minimum proton-bound dimer. Changing the formation environment or tagging strategy produces other non-centrosymmetric structures, but there is no spectroscopic evidence for the centrosymmetric proton-bound dimer. The formation of higher energy isomers may be caused by a kinetic effect, such as the binding of X (=Ar, Ne, or H2) to H+(CO) prior to the formation of X H+(CO)2. Regardless, there is a strong tendency to produce non-centrosymmetric structures in which HCO+ remains an intact core ion.
RESUMO
Molecular cations of HO4 + and DO4 + are produced in a supersonic expansion. They are mass-selected, and infrared photodissociation spectra of these species are measured with the aid of argon-tagging. Although previous theoretical studies have modeled these systems as proton-bound dimers of molecular oxygen, infrared spectra have free OH stretching bands, suggesting other isomeric structures. As a consequence, we undertook extensive computational studies. Our conformer search used a composite method based on an economical combination of single- and multi-reference theories. Several conformers were located on the quintet, triplet, and singlet surfaces, spanning in energy of only a few thousand wavenumbers. Most of the singlet and triplet conformers have pronounced multiconfigurational character. Previously unidentified covalent-like structures (H-O-O-O-O) on the singlet and triplet surfaces likely represent the global minima. In our experiments, HO4 + is formed in a relatively hot environment, and similar experiments have been shown capable of producing multiple conformers in low-lying electronic states. None of the predicted HO4 + isomers can be ruled out a priori based on energetic arguments. We interpret our argon-tagged spectra with Second-Order Vibrational Perturbation Theory with Resonances (VPT2+K). The presence of one or more covalent-like isomers is the only reasonable explanation for the spectral features observed.
RESUMO
Sulfurous acid (H2SO3) is an infamously elusive molecule. Although some theoretical papers have supposed possible roles for it in more complicated systems, it has yet to be experimentally observed. To aid experiment in detecting this molecule, we have examined the H2O + SO2 potential energy surface at the CCSDT(Q)/CBS//CCSD(T)-F12b/cc-pVTZ-F12b level of theory to resolve standing discrepancies in previous reports and predict the gas-phase vibrational spectrum for H2SO3. We find that sulfurous acid has two potentially detectable rotamers, separated by 1.1 kcal mol-1 ΔH0K with a torsional barrier of 1.6 kcal mol-1. The sulfonic acid isomer is only 6.9 kcal mol-1 above the lowest enthalpy sulfurous acid rotamer, but the barrier to form it is 57.2 kcal mol-1. Error in previous reports can be attributed to misidentified stationary points, the use of density functionals that perform poorly for this system, and, most importantly, the basis set sensitivity of sulfur. Using VPT2+K, we determine that the intense S=O stretch fundamental of each species is separated from other intense peaks by at least 25 cm-1, providing a target for identification by infrared spectroscopy.
RESUMO
Vinoxy radicals are involved in numerous atmospheric and combustion mechanisms. High-level theoretical methods have recently shed new light on the reaction of the unsubstituted vinoxy radical with O2. The reactions of 1-methylvinoxy radical and 2-methylvinoxy radical with molecular oxygen have experimental high pressure limiting rate constants, k∞, 5-7 times higher than that of the vinoxy plus O2 reaction. In this work, high-level ab initio quantum chemical computations are applied to the 2-methylvinoxy radical plus O2 system, namely, the formation and isomerization of the 1-oxo-2-propylperoxy radical, the immediate product of O2 addition to the 2-methylvinoxy radical. Multireference methods were applied to the entrance channel. No barrier to O2 addition could be located, and more sophisticated treatment of dynamic electron correlation shows that the principal difference between O2 addition to the vinoxy and 2-methylvinoxy radicals is a larger steric factor for 2-methylvinoxy + O2. This is attributed to the favorable interaction between the incoming O2 molecule and the methyl group of the 2-methylvinoxy radical. Via the focal point approach, energetics for this reaction were determined, in most cases, to chemical accuracy. The coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] correlation energy and Hartree-Fock energies were independently extrapolated to the complete basis set limit. A correction for the effect of higher excitations was computed at the CCSDT(Q)/6-31G level. Corrections for the frozen-core approximation, the Born-Oppenheimer approximation, the nonrelativistic approximation, and the zero-point vibrational energy were included. From the 1-oxo-2-propylperoxy radical, dissociation to reactants is competitive with the lowest energy isomerization pathway. The lowest energy isomerization pathway ultimately forms acetaldehyde, CO, and ·OH as the final products.
RESUMO
Three constitutional isomers of both Ca2H2 and Ca2H4 have been characterized with molecular electronic structure theory. Correlation methods as complete as CCSDT(Q) and basis sets as large as cc-pwCV5Z have been used to converge the relative energies within chemical accuracy (≤1 kcal mol-1). Anharmonic vibrational frequencies were computed using second-order vibrational perturbation theory employing CCSD(T)/cc-pwCVTZ cubic and quartic force-fields and a CCSD(T)/cc-pwCVQZ quadratic force field. The monobridged [Ca(µ2-H)CaH] and dibridged [Ca(µ2-H)2Ca] isomers of Ca2H2 were predicted to lie 6.5 and 12.9 kcal mol-1 below the energy of the classical HCaCaH linear isomer, respectively. Despite the energetic favorability of the bridged Ca2H2 isomers, we conclude (surprisingly) that only the higher energy linear structure has been observed in the laboratory. At 0 K, the tribridged [Ca(µ2-H)3CaH] isomer of Ca2H4 is predicted to be enthalpically favored by 0.9 kcal mol-1 in comparison to the enthalpy of the dibridged [HCa(µ2-H)2CaH] structure. Comparison of experiment with our computed frequencies suggests that the observed vibrational features arise from both the dibridged and the tribridged Ca2H4 structures.
RESUMO
Alkylperoxy radicals (RO2Ë) are key intermediates in combustion and atmospheric oxidation processes. As such, reliable detection and monitoring of these radicals can provide a wealth of information about the underlying chemistry. The tert-butyl peroxy radical is the archetypal tertiary peroxy radical, yet its vibrational spectroscopy is largely unexplored. To aid in future experimental investigations, we have performed high-level theoretical studies of the fundamental vibrational frequencies of the ground- and first excited states. A conformer search on both electronic surfaces reveals single minimum-energy structures. We predict an Ã2A' â X[combining tilde]2A'' adiabatic excitation energy of 7738 cm-1via focal point analysis, approximating the CCSDT(Q)/CBS level of theory. This excitation energy agrees to within 17 cm-1 of the most accurate experimental measurement. We compute CCSD(T) fundamental vibrational frequencies via second-order vibrational perturbation theory (VPT2), using a hybrid force field in which the quadratic (cubic/quartic) force constants are evaluated with the ANO1 (ANO0) basis set. Anharmonic resonance polyads are treated with the VPT2 + K effective Hamiltonian approach. Among the predicted fundamental frequencies, the ground state O-O stretch, excited state O-O stretch, and excited state C-O-O bend fundamentals are predicted at 1138, 959, and 490 cm-1, respectively. Basis set sensitivity is found to be particularly great for the O-O stretches, similar to what has already been noted in smaller, unbranched peroxy radicals. Exempting these O-O stretches, agreement with the available experimental fundamentals is generally good (±10 cm-1).
RESUMO
Helium-solvated ethylperoxy radicals (CH3CH2OOâ¢) are formed via the in situ reaction between 2A' ethyl radical and 3Σg- dioxygen. The reactants are captured sequentially through the droplet pick-up technique. Helium droplets are doped with ethyl radical via pyrolysis of di- tert-amyl peroxide or n-propylnitrite in an effusive, low-pressure source. An infrared spectrum of ethylperoxy, in the CH stretching region, is recorded with species-selective droplet beam depletion spectroscopy. Spectral assignments are made via comparisons to second-order vibrational perturbation theory with resonances (VPT2 + K) based on coupled-cluster full quartic force fields. Cubic and quartic force constants, evaluated using a small basis set, are transformed into the normal coordinate system of the higher level quadratic force constants. This transformation procedure eliminates the mismatch between normal modes, which is a source of error whenever normal coordinate force constants from different levels of theory are combined. The spectrum shows signatures of both the C1 gauche and C s trans rotamers in an approximate 2:1 ratio; this is despite the prediction that the gauche rotamer lies 44 cm-1 lower on the zero-Kelvin enthalpic potential surface for torsional interconversion. Helium droplets are 0.4 K at equilibrium; therefore, in situ ethylperoxy production is highly nonthermal.
RESUMO
Fulvenallene is the global minimum on the C7H6 potential energy surface. Rearrangement of fulvenallene to other C7H6 species and dissociation to produce fulvenallenyl radical (C7H5) is carried out in a continuous-wave SiC pyrolysis furnace at 1500 K. Prompt pick-up and solvation by helium droplets allows for the acquisition of vibrational spectra of these species in the CH stretching region. Anharmonic frequencies for fulvenallene, fulvenallenyl, and three isomers of ethynylcyclopentadiene are computed ab initio; VPT2+K spectral simulations are based on hybrid CCSD(T) force fields with quadratic (cubic and quartic) force constants computed using the ANO1 (ANO0) basis set. The acetylenic CH stretch of the fulvenallenyl radical is a sensitive marker of the extent by which the unpaired electron is delocalized throughout the conjugated propargyl and cyclopentadienyl subunits. The nature of this electron delocalization is explored with spin density calculations at the ROHF-CCSD(T)/ANO1 level of theory. Atomic partitioning of the spin density allows for a description of the fulvenallenyl radical in terms of two resonance structures: fulvenallenyl is approximately 24% allenic and 76% acetylenic.
RESUMO
Isoprene (C5H8) is an abundant, reactive tropospheric hydrocarbon, derived from biogenic emissions. A detailed understanding of the spectroscopy of isoprene is therefore desirable. Isoprene monomer is isolated in helium droplets and its infrared spectrum is measured in the CH stretching region. Anharmonic frequencies are predicted by VPT2+K simulations employing CCSD(T) force fields with quadratic (cubic and quartic) force constants computed using the ANO1 (ANO0) basis set. The vast majority of the spectral features can be assigned to trans-isoprene on the basis of these computations. Some features of the higher energy gauche conformer are also assignable, by comparison to experiments using heated isoprene. Convergent ab initio thermochemistry is presented for the isomerization pathway, for which the partition function explicitly accounts for the eigenstates associated with separate, uncoupled one-dimensional potential surfaces for methyl torsion and internal rotation between rotamers. The respective 0 and 298.15 K trans/gauche energy differences are 2.82 and 2.52 kcal/mol, which implies a room temperature gauche population of 2.8%.
RESUMO
Catalytic thermal cracking of O2 is employed to dope helium droplets with O(3P) atoms. Mass spectrometry of the doped droplet beam reveals an O2 dissociation efficiency larger than 60%; approximately 26% of the droplet ensemble is doped with single oxygen atoms. Sequential capture of O(3P) and HCN leads to the production of a hydrogen-bound O-HCN complex in a 3Σ electronic state, as determined via comparisons of experimental and theoretical rovibrational Stark spectroscopy. Ab initio computations of the three lowest lying intermolecular potential energy surfaces reveal two isomers, the hydrogen-bound (3Σ) O-HCN complex and a nitrogen-bound (3Π) HCN-O complex, lying 323 cm-1 higher in energy. The HCN-O to O-HCN interconversion barrier is predicted to be 42 cm-1. Consistent with this relatively small interconversion barrier, there is no experimental evidence for the production of the nitrogen-bound species upon sequential capture of O(3P) and HCN.