Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 44(12): 4561-4571, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37341428

RESUMO

Optimism bias is the tendency to believe desirable events are more likely to happen than undesirable ones. People often display optimistic biases for themselves (personal optimism), but also for members of groups they like or identify with (social optimism). However, the neural bases of and connections between these two concepts are poorly understood. The present study hence used both questionnaires and a social optimism task performed during magnetic resonance imaging to investigate how network connectivity associates with personal and social optimism biases. Using sparse canonical correlation analysis, we found that a behavioral dimension that included both in-group optimism bias and personal optimism bias was positively associated with a dimension of network connectivity. This dimension comprised two networks with positive weights (dorsal precuneus-related default mode network and dorsal sensorimotor network), and three with negative weights (including parts of the salience and central executive networks). Our findings indicate that connectivity in networks adjacent to the temporoparietal junction favors propagation of both personal and social optimism biases. Meanwhile, low connectivity in more frontal networks associated with more complex cognition may also further such propagation.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Otimismo , Cognição , Imageamento por Ressonância Magnética/métodos
2.
Hum Brain Mapp ; 42(9): 2893-2906, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33755272

RESUMO

An optimism bias refers to the belief in good things happening to oneself in the future with a higher likelihood than is justified. Social optimism biases extend this concept to groups that one identifies with. Previous literature has found that both personal and social optimism biases are linked to brain structure and task-related brain function. Less is known about whether optimism biases are also expressed in resting-state functional connectivity (RSFC). Forty-two participants completed questionnaires on dispositional personal optimism (which is not necessarily unjustified) and comparative optimism (i.e., whether we see our own future as being rosier than a comparison person's future) and underwent a resting-state functional magnetic resonance imaging scan. They further undertook an imaginative soccer task in order to assess both their personal and social optimism bias. We tested associations of these data with RSFC within and between 13 networks, using sparse canonical correlation analyses (sCCAs). We found that the primary sCCA component was positively connected to personal and social optimism bias and negatively connected to dispositional personal pessimism. This component was associated with (a) reduced integration of the default mode network, (b) reduced integration of the central executive and salience networks, and (c) reduced segregation between the default mode network and the central executive network. Our finding that optimism biases are linked to RSFC indicates that they may be rooted in neurobiology that exists outside of concurrent tasks. This poses questions as to what the limits of the malleability of such biases may be.


Assuntos
Córtex Cerebral/fisiologia , Conectoma , Rede de Modo Padrão/fisiologia , Função Executiva/fisiologia , Rede Nervosa/fisiologia , Otimismo , Comparação Social , Adolescente , Adulto , Córtex Cerebral/diagnóstico por imagem , Rede de Modo Padrão/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
3.
Neuroimage ; 185: 27-34, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30312809

RESUMO

BACKGROUND: Intracortical myelin is a key determinant of neuronal synchrony and plasticity that underpin optimal brain function. Magnetic resonance imaging (MRI) facilitates the examination of intracortical myelin but presents with methodological challenges. Here we describe a whole-brain approach for the in vivo investigation of intracortical myelin in the human brain using ultra-high field MRI. METHODS: Twenty-five healthy adults were imaged in a 7 Tesla MRI scanner using diffusion-weighted imaging and a T1-weighted sequence optimized for intracortical myelin contrast. Using an automated pipeline, T1 values were extracted at 20 depth-levels from each of 148 cortical regions. In each cortical region, T1 values were used to infer myelin concentration and to construct a non-linearity index as a measure the spatial distribution of myelin across the cortical ribbon. The relationship of myelin concentration and the non-linearity index with other neuroanatomical properties were investigated. Five patients with multiple sclerosis were also assessed using the same protocol as positive controls. RESULTS: Intracortical T1 values decreased between the outer brain surface and the gray-white matter boundary following a slope that showed a slight leveling between 50% and 75% of cortical depth. Higher-order regions in the prefrontal, cingulate and insular cortices, displayed higher non-linearity indices than sensorimotor regions. Across all regions, there was a positive association between T1 values and non-linearity indices (P < 10-5). Both T1 values (P < 10-5) and non-linearity indices (P < 10-15) were associated with cortical thickness. Higher myelin concentration but only in the deepest cortical levels was associated with increased subcortical fractional anisotropy (P = 0.05). CONCLUSIONS: We demonstrate the usefulness of an automatic, whole-brain method to perform depth-dependent examination of intracortical myelin organization. The extracted metrics, T1 values and the non-linearity index, have characteristic patterns across cortical regions, and are associated with thickness and underlying white matter microstructure.


Assuntos
Encéfalo/anatomia & histologia , Imagem de Difusão por Ressonância Magnética/métodos , Bainha de Mielina , Neuroimagem/métodos , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Bainha de Mielina/ultraestrutura
4.
Brain Topogr ; 32(1): 80-86, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30136050

RESUMO

Metastability is currently considered a fundamental property of the functional configuration of brain networks. The present study sought to generate a normative reference framework for the metastability of the major resting-state networks (RSNs) (resting-state metastability dataset) and discover their association with demographic, behavioral, physical and cognitive features (non-imaging dataset) from 818 participants of the Human Connectome Project. Using sparse canonical correlation analysis, we found that the metastability and non-imaging datasets showed significant but modest interdependency. Notable associations between the metastability variate and the non-imaging features were observed for higher-order cognitive ability and indicators of physical well-being. The intra-class correlation coefficient between the sibling pairs in the sample was very low which argues against a significant familial influence on RSN metastability.


Assuntos
Encéfalo/diagnóstico por imagem , Conectoma , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
5.
Front Neurol ; 5: 23, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24653713

RESUMO

The default-mode network (DMN) is a major resting-state network. It can be divided in two distinct networks: one is composed of dorsal and anterior regions [referred to as the dorsal DMN (dDMN)], while the other involves the more posterior regions [referred to as the ventral DMN (vDMN)]. To date, no studies have investigated the potentially distinct impact of temporal lobe epilepsy (TLE) on these networks. In this context, we explored the effect of TLE and anterior temporal lobectomy (ATL) on the dDMN and vDMN. We utilized two resting-state fMRI sessions from left, right TLE patients (pre-/post-surgery) and normal controls (sessions 1/2). Using independent component analysis, we identified the two networks. We then evaluated for differences in spatial extent for each network between the groups, and across the scanning sessions. The results revealed that, pre-surgery, the dDMN showed larger differences between the three groups than the vDMN, and more particularly between right and left TLE than between the TLE patients and controls. In terms of change post-surgery, in both TLE groups, the dDMN also demonstrated larger changes than the vDMN. For the vDMN, the only changes involved the resected temporal lobe for each ATL group. For the dDMN, the left ATL group showed post-surgical increases in several regions outside the ictal temporal lobe. In contrast, the right ATL group displayed a large reduction in the frontal cortex. The results highlight that the two DMNs are not impacted by TLE and ATL in an equivalent fashion. Importantly, the dDMN was the more affected, with right ATL having a more deleterious effects than left ATL. We are the first to highlight that the dDMN more strongly bears the negative impact of TLE than the vDMN, suggesting there is an interaction between the side of pathology and DM sub-network activity. Our findings have implications for understanding the impact TLE and subsequent ATL on the functions implemented by the distinct DMNs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA