Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Hippocampus ; 33(5): 573-585, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37002559

RESUMO

Cells selectively activated by a particular view of an environment have been found in the primate hippocampus (HPC). Whether view cells are present in other brain areas, and how view selectivity interacts with other variables such as object features and place remain unclear. Here, we explore these issues by recording the responses of neurons in the HPC and the lateral prefrontal cortex (LPFC) of rhesus macaques performing a task in which they learn new context-object associations while navigating a virtual environment using a joystick. We measured neuronal responses at different locations in a virtual maze where animals freely directed gaze to different regions of the visual scenes. We show that specific views containing task relevant objects selectively activated a proportion of HPC units, and an even higher proportion of LPFC units. Place selectivity was scarce and generally dependent on view. Many view cells were not affected by changing the object color or the context cue, two task relevant features. However, a small proportion of view cells showed selectivity for these two features. Our results show that during navigation in a virtual environment with complex and dynamic visual stimuli, view cells are found in both the HPC and the LPFC. View cells may have developed as a multiarea specialization in diurnal primates to encode the complexities and layouts of the environment through gaze exploration which ultimately enables building cognitive maps of space that guide navigation.


Assuntos
Hipocampo , Neurônios , Animais , Macaca mulatta , Neurônios/fisiologia , Hipocampo/fisiologia , Córtex Pré-Frontal/fisiologia , Aprendizagem
2.
Neuron ; 110(13): 2155-2169.e4, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35561675

RESUMO

The hippocampus (HPC) and the lateral prefrontal cortex (LPFC) are two cortical areas of the primate brain deemed essential to cognition. Here, we hypothesized that the codes mediating neuronal communication in the HPC and LPFC microcircuits have distinctively evolved to serve plasticity and memory function at different spatiotemporal scales. We used a virtual reality task in which animals selected one of the two targets in the arms of the maze, according to a learned context-color rule. Our results show that during associative learning, HPC principal cells concentrate spikes in bursts, enabling temporal summation and fast synaptic plasticity in small populations of neurons and ultimately facilitating rapid encoding of associative memories. On the other hand, layer II/III LPFC pyramidal cells fire spikes more sparsely distributed over time. The latter would facilitate broadcasting of signals loaded in short-term memory across neuronal populations without necessarily triggering fast synaptic plasticity.


Assuntos
Hipocampo , Córtex Pré-Frontal , Animais , Hipocampo/fisiologia , Memória de Curto Prazo/fisiologia , Córtex Pré-Frontal/fisiologia , Primatas , Células Piramidais/fisiologia
3.
Int J Neural Syst ; 31(6): 2150023, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33931006

RESUMO

Most invasive Brain Computer Interfaces (iBCIs) use spike and Local Field Potentials (LFPs) from the motor or parietal cortices to decode movement intentions. It has been debated whether harvesting signals from other brain areas that encode global cognitive variables, such as the allocation of attention and eye movement goals in a variety of spatial reference frames, may improve the outcome of iBCIs. Here, we explore the ability of LFP signals, sampled from the lateral prefrontal cortex (LPFC) of macaque monkeys, to encode eye-movement intention during the pre-movement fixation period of a delayed saccade task. We use spectral dimensionality reduction to examine the spatiotemporal properties of the extracted non-rhythmic broadband activity and explore its usefulness in decoding saccade goals. The dynamics of the broadband signal in low spatial dimensions across the pre-movement fixation period uncovered saccade target separation; its discriminative potential was confirmed using support vector machine classifications. These findings reveal that broadband LFP from the LPFC can be used to decode intended saccade target location during pre-movement periods. We further provide a general workflow that can be implemented in iBCIs and it is relatively robust to the loss of spikes in individual electrodes.


Assuntos
Interfaces Cérebro-Computador , Movimentos Sacádicos , Potenciais de Ação , Animais , Intenção , Córtex Pré-Frontal , Primatas
4.
Hippocampus ; 30(3): 192-209, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31339193

RESUMO

Primates use saccades to gather information about objects and their relative spatial arrangement, a process essential for visual perception and memory. It has been proposed that signals linked to saccades reset the phase of local field potential (LFP) oscillations in the hippocampus, providing a temporal window for visual signals to activate neurons in this region and influence memory formation. We investigated this issue by measuring hippocampal LFPs and spikes in two macaques performing different tasks with unconstrained eye movements. We found that LFP phase clustering (PC) in the alpha/beta (8-16 Hz) frequencies followed foveation onsets, while PC in frequencies lower than 8 Hz followed spontaneous saccades, even on a homogeneous background. Saccades to a solid grey background were not followed by increases in local neuronal firing, whereas saccades toward appearing visual stimuli were. Finally, saccade parameters correlated with LFPs phase and amplitude: saccade direction correlated with delta (≤4 Hz) phase, and saccade amplitude with theta (4-8 Hz) power. Our results suggest that signals linked to saccades reach the hippocampus, producing synchronization of delta/theta LFPs without a general activation of local neurons. Moreover, some visual inputs co-occurring with saccades produce LFP synchronization in the alpha/beta bands and elevated neuronal firing. Our findings support the hypothesis that saccade-related signals enact sensory input-dependent plasticity and therefore memory formation in the primate hippocampus.


Assuntos
Hipocampo/fisiologia , Potenciais da Membrana/fisiologia , Neurônios/fisiologia , Movimentos Sacádicos/fisiologia , Percepção Visual/fisiologia , Potenciais de Ação/fisiologia , Animais , Macaca mulatta , Masculino
5.
Nat Neurosci ; 23(1): 103-112, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31873285

RESUMO

The hippocampus is implicated in associative memory and spatial navigation. To investigate how these functions are mixed in the hippocampus, we recorded from single hippocampal neurons in macaque monkeys navigating a virtual maze during a foraging task and a context-object associative memory task. During both tasks, single neurons encoded information about spatial position; a linear classifier also decoded position. However, the population code for space did not generalize across tasks, particularly where stimuli relevant to the associative memory task appeared. Single-neuron and population-level analyses revealed that cross-task changes were due to selectivity for nonspatial features of the associative memory task when they were visually available (perceptual coding) and following their disappearance (mnemonic coding). Our results show that neurons in the primate hippocampus nonlinearly mix information about space and nonspatial elements of the environment in a task-dependent manner; this efficient code flexibly represents unique perceptual experiences and correspondent memories.


Assuntos
Hipocampo/fisiologia , Memória/fisiologia , Neurônios/fisiologia , Navegação Espacial/fisiologia , Animais , Macaca mulatta , Masculino , Percepção Espacial/fisiologia
6.
J Vis ; 17(12): 15, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29071352

RESUMO

Virtual environments (VE) allow testing complex behaviors in naturalistic settings by combining highly controlled visual stimuli with spatial navigation and other cognitive tasks. They also allow for the recording of eye movements using high-precision eye tracking techniques, which is important in electrophysiological studies examining the response properties of neurons in visual areas of nonhuman primates. However, during virtual navigation, the pattern of retinal stimulation can be highly dynamic which may influence eye movements. Here we examine whether and how eye movement patterns change as a function of dynamic visual stimulation during virtual navigation tasks, relative to standard oculomotor tasks. We trained two rhesus macaques to use a joystick to navigate in a VE to complete two tasks. To contrast VE behavior with classic measurements, the monkeys also performed a simple Cued Saccade task. We used a robust algorithm for rapid classification of saccades, fixations, and smooth pursuits. We then analyzed the kinematics of saccades during all tasks, and specifically during different phases of the VE tasks. We found that fixation to smooth pursuit ratios were smaller in VE tasks (4:5) compared to the Cued Saccade task (7:1), reflecting a more intensive use of smooth pursuit to foveate targets in VE than in a standard visually guided saccade task or during spontaneous fixations. Saccades made to rewarded targets (exploitation) tended to have increased peak velocities compared to saccades made to unrewarded objects (exploration). VE exploitation saccades were 6% slower than saccades to discrete targets in the Cued Saccade task. Virtual environments represent a technological advance in experimental design for nonhuman primates. Here we provide a framework to study the ways that eye movements change between and within static and dynamic displays.


Assuntos
Movimentos Oculares/fisiologia , Macaca mulatta/fisiologia , Animais , Fenômenos Biomecânicos , Sinais (Psicologia) , Comportamento Alimentar/fisiologia , Aprendizagem/fisiologia , Masculino , Estimulação Luminosa/métodos , Acompanhamento Ocular Uniforme/fisiologia , Movimentos Sacádicos/fisiologia
7.
J Neurosci Methods ; 266: 84-93, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27015795

RESUMO

BACKGROUND: Although simplified visual stimuli, such as dots or gratings presented on homogeneous backgrounds, provide strict control over the stimulus parameters during visual experiments, they fail to approximate visual stimulation in natural conditions. Adoption of virtual reality (VR) in neuroscience research has been proposed to circumvent this problem, by combining strict control of experimental variables and behavioral monitoring within complex and realistic environments. NEW METHOD: We have created a VR toolbox that maximizes experimental flexibility while minimizing implementation costs. A free VR engine (Unreal 3) has been customized to interface with any control software via text commands, allowing seamless introduction into pre-existing laboratory data acquisition frameworks. Furthermore, control functions are provided for the two most common programming languages used in visual neuroscience: Matlab and Python. RESULTS: The toolbox offers milliseconds time resolution necessary for electrophysiological recordings and is flexible enough to support cross-species usage across a wide range of paradigms. COMPARISON WITH EXISTING METHODS: Unlike previously proposed VR solutions whose implementation is complex and time-consuming, our toolbox requires minimal customization or technical expertise to interface with pre-existing data acquisition frameworks as it relies on already familiar programming environments. Moreover, as it is compatible with a variety of display and input devices, identical VR testing paradigms can be used across species, from rodents to humans. CONCLUSIONS: This toolbox facilitates the addition of VR capabilities to any laboratory without perturbing pre-existing data acquisition frameworks, or requiring any major hardware changes.


Assuntos
Testes Psicológicos , Interface Usuário-Computador , Algoritmos , Animais , Humanos , Aprendizagem em Labirinto , Fatores de Tempo
8.
J Neurosci ; 35(24): 9038-49, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26085629

RESUMO

Local field potentials (LFPs) are fluctuations of extracellular voltage that may reflect the physiological phenomena occurring within a volume of neural tissue. It is known that the allocation of spatial attention modulates the amplitude of LFPs in visual areas of primates. An issue that remains poorly investigated is whether and how attention modulates LFPs in executive brain areas, such as the lateral prefrontal cortex (LPFC), thought to be involved in the origins of attention. We addressed this issue by recording LFPs from multielectrode arrays implanted in the LPFC of two macaques. We found that the allocation of attention can be reliably decoded on a single-trial basis from ensembles of LFPs with frequencies >60 Hz. Using LFP frequencies <60 Hz, we could not decode the allocation of attention, but we could decode the location of a visual stimulus as well as the endpoint of saccades toward that stimulus. The information contained in the high-frequency LFPs was fully redundant with the information contained in the spiking activity of single neurons recorded from the same electrodes. Moreover, the decoding of attention using γ frequency LFPs was less accurate than using spikes, but it was twice more stable across time. Finally, decorrelating the LFP signals from the different electrodes increased decoding performance in the high frequencies by up to ∼14%. Our findings suggest that LFPs recorded from chronically implanted multielectrode arrays in the LPFC contain information about sensory, cognitive, and motor components of a task in a frequency-dependent manner.


Assuntos
Potenciais de Ação/fisiologia , Atenção/fisiologia , Estimulação Luminosa/métodos , Córtex Pré-Frontal/fisiologia , Desempenho Psicomotor/fisiologia , Animais , Macaca fascicularis , Masculino , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA