Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neoplasia ; 43: 100918, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37499275

RESUMO

Certain Enterobacteriaceae strains contain a 54-kb biosynthetic gene cluster referred to as "pks" encoding the biosynthesis of a secondary metabolite, colibactin. Colibactin-producing E. coli promote colorectal cancer (CRC) in preclinical models, and in vitro induce a specific mutational signature that is also detected in human CRC genomes. Yet, how colibactin exposure affects the mutational landscape of CRC in vivo remains unclear. Here we show that colibactin-producing E. coli-driven colonic tumors in mice have a significantly higher SBS burden and a larger percentage of these mutations can be attributed to a signature associated with mismatch repair deficiency (MMRd; SBS15), compared to tumors developed in the presence of colibactin-deficient E. coli. We found that the synthetic colibactin 742 but not an inactive analog 746 causes DNA damage and induces transcriptional activation of p53 and senescence signaling pathways in non-transformed human colonic epithelial cells. In MMRd colon cancer cells (HCT 116), chronic exposure to 742 resulted in the upregulation of BRCA1, Fanconi anemia, and MMR signaling pathways as revealed by global transcriptomic analysis. This was accompanied by increased T>N single-base substitutions (SBS) attributed to the proposed pks+E. coli signature (SBS88), reactive oxygen species (SBS17), and mismatch-repair deficiency (SBS44). A significant co-occurrence between MMRd SBS44 and pks-associated SBS88 signature was observed in a large cohort of human CRC patients (n=2,945), and significantly more SBS44 mutations were found when SBS88 was also detected. Collectively, these findings reveal the host response mechanisms underlying colibactin genotoxic activity and suggest that colibactin may exacerbate MMRd-associated mutations.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Camundongos , Animais , Mutagênicos/toxicidade , Mutagênicos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Reparo de Erro de Pareamento de DNA/genética , Mutação , Neoplasias Colorretais/genética , Neoplasias do Colo/patologia
2.
Gut Microbes ; 15(1): 2185028, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36927206

RESUMO

The etiology of colorectal cancer (CRC) is influenced by bacterial communities that colonize the gastrointestinal tract. These microorganisms derive essential nutrients from indigestible dietary or host-derived compounds and activate molecular signaling pathways necessary for normal tissue and immune function. Associative and mechanistic studies have identified bacterial species whose presence may increase CRC risk, including notable examples such as Fusobacterium nucleatum, Enterotoxigenic Bacteroides fragilis, and pks+ E. coli. In recent years this work has expanded in scope to include aspects of host mutational status, intra-tumoral microbial heterogeneity, transient infection, and the cumulative influence of multiple carcinogenic bacteria after sequential or co-colonization. In this review, we will provide an updated overview of how host-bacteria interactions influence CRC development, how this knowledge may be utilized to diagnose or prevent CRC, and how the gut microbiome influences CRC treatment efficacy.


Assuntos
Infecções Bacterianas , Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/terapia , Escherichia coli , Fusobacterium nucleatum
3.
JCI Insight ; 7(19)2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36048542

RESUMO

Clinical studies of cancer patients have shown that overexpression or amplification of thymidylate synthase (TS) correlates with a worse clinical outcome. We previously showed that elevated TS exhibits properties of an oncogene and promotes pancreatic neuroendocrine tumors (PanNETs) with a long latency. To study the causal impact of elevated TS levels in PanNETs, we generated a mouse model with elevated human TS (hTS) and conditional inactivation of the Men1 gene in pancreatic islet cells (hTS/Men1-/-). We demonstrated that increased hTS expression was associated with earlier tumor onset and accelerated PanNET development in comparison with control Men1-/- and Men1+/ΔN3-8 mice. We also observed a decrease in overall survival of hTS/Men1+/- and hTS/Men1-/- mice as compared with control mice. We showed that elevated hTS in Men1-deleted tumor cells enhanced cell proliferation, deregulated cell cycle kinetics, and was associated with a higher frequency of somatic mutations, DNA damage, and genomic instability. In addition, we analyzed the survival of 88 patients with PanNETs and observed that high TS protein expression independently predicted worse clinical outcomes. In summary, elevated hTS directly participates in promoting PanNET tumorigenesis with reduced survival in Men1-mutant background. This work will refocus attention on new strategies to inhibit TS activity for PanNET treatment.


Assuntos
Tumores Neuroendócrinos , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/metabolismo , Pâncreas/patologia , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas/genética , Timidilato Sintase/genética
4.
Nat Commun ; 12(1): 4462, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294718

RESUMO

RORγt+ lymphocytes, including interleukin 17 (IL-17)-producing gamma delta T (γδT17) cells, T helper 17 (Th17) cells, and group 3 innate lymphoid cells (ILC3s), are important immune regulators. Compared to Th17 cells and ILC3s, γδT17 cell metabolism and its role in tissue homeostasis remains poorly understood. Here, we report that the tissue milieu shapes splenic and intestinal γδT17 cell gene signatures. Conditional deletion of mitochondrial transcription factor A (Tfam) in RORγt+ lymphocytes significantly affects systemic γδT17 cell maintenance and reduces ILC3s without affecting Th17 cells in the gut. In vivo deletion of Tfam in RORγt+ lymphocytes, especially in γδT17 cells, results in small intestine tissue remodeling and increases small intestine length by enhancing the type 2 immune responses in mice. Moreover, these mice show dysregulation of the small intestine transcriptome and metabolism with less body weight but enhanced anti-helminth immunity. IL-22, a cytokine produced by RORγt+ lymphocytes inhibits IL-13-induced tuft cell differentiation in vitro, and suppresses the tuft cell-type 2 immune circuit and small intestine lengthening in vivo, highlighting its key role in gut tissue remodeling.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Intestino Delgado/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Animais , Diferenciação Celular , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Feminino , Perfilação da Expressão Gênica , Proteínas de Grupo de Alta Mobilidade/deficiência , Proteínas de Grupo de Alta Mobilidade/genética , Homeostase/imunologia , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Masculino , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Organoides , Proteína com Dedos de Zinco da Leucemia Promielocítica/genética , Proteína com Dedos de Zinco da Leucemia Promielocítica/metabolismo , Subpopulações de Linfócitos T/citologia , Células Th17/citologia , Células Th17/imunologia , Células Th17/metabolismo
5.
Toxins (Basel) ; 13(5)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065799

RESUMO

Colibactin is a secondary metabolite encoded by the pks gene island identified in several Enterobacteriaceae, including some pathogenic Escherichia coli (E. coli) commonly enriched in mucosal tissue collected from patients with inflammatory bowel disease and colorectal cancer. E. coli harboring this biosynthetic gene cluster cause DNA damage and tumorigenesis in cell lines and pre-clinical models, yet fundamental knowledge regarding colibactin function is lacking. To accurately assess the role of pks+ E. coli in cancer etiology, the biological mechanisms governing production and delivery of colibactin by these bacteria must be elucidated. In this review, we will focus on recent advances in our understanding of colibactin's structural mode-of-action and mutagenic potential with consideration for how this activity may be regulated by physiologic conditions within the intestine.


Assuntos
Enterobacteriaceae/metabolismo , Mutagênicos/metabolismo , Peptídeos/metabolismo , Policetídeos/metabolismo , Animais , Dano ao DNA , Enterobacteriaceae/genética , Humanos , Família Multigênica , Mutagênicos/toxicidade , Peptídeos/toxicidade , Policetídeos/toxicidade , Metabolismo Secundário
6.
BMC Microbiol ; 20(1): 205, 2020 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-32652929

RESUMO

BACKGROUND: The intestinal tract undergoes a period of cellular maturation during early life, primarily characterized by the organization of epithelial cells into specialized crypt and villus structures. These processes are in part mediated by the acquisition of microbes. Infants delivered at term typically harbor a stable, low diversity microbiota characterized by an overrepresentation of various Bacilli spp., while pre-term infants are colonized by an assortment of bacteria during the first several weeks after delivery. However, the functional effects of these changes on intestinal epithelium homeostasis and maturation remain unclear. To study these effects, human neonate feces were obtained from term and pre-term infants. Fecal 16S rDNA sequencing and global untargeted LC-MS were performed to characterize microbial composition and metabolites from each population. Murine enteral organoids (enteroids) were cultured with 0.22 µm filtered stool supernatant pooled from term or pre-term infants. RESULTS: Term and pre-term microbial communities differed significantly from each other by principle components analysis (PCoA, PERMANOVA p < 0.001), with the pre-term microbiome characterized by increased OTU diversity (Wilcox test p < 0.01). Term communities were less diverse and dominated by Bacilli (81.54%). Pre-term stools had an increased abundance of vitamins, amino acid derivatives and unconjugated bile acids. Pathway analysis revealed a significant increase in multiple metabolic pathways in pre-term samples mapped to E. coli using the KEGG database related to the fermentation of various amino acids and vitamin biosynthesis. Enteroids cultured with supernatant from pre-term stools proliferated at a higher rate than those cultured with supernatant from term stools (cell viability: 207% vs. 147.7%, p < 0.01), grew larger (area: 81,189µm2 vs. 41,777µm2, p < 0.001), and bud at a higher rate (6.5 vs. 4, p < 0.01). Additionally, genes involved in stem cell proliferation were upregulated in pre-term stool treated enteroid cultures (Lgr5, Ephb2, Ascl2 Sox9) but not term stool treated enteroids. CONCLUSIONS: Our findings indicate that microbial metabolites from the more diverse gut microbiome associated with pre-term infants facilitate stem cell proliferation. Therefore, perturbations of the pre-term microbiota may impair intestinal homeostasis.


Assuntos
Bactérias/classificação , Enterócitos/citologia , Metabolômica/métodos , Nascimento Prematuro/microbiologia , RNA Ribossômico 16S/genética , Animais , Animais Recém-Nascidos , Bactérias/química , Bactérias/genética , Bactérias/isolamento & purificação , Biomarcadores/metabolismo , Proliferação de Células , DNA Bacteriano/genética , DNA Ribossômico/genética , Enterócitos/microbiologia , Fezes/microbiologia , Microbioma Gastrointestinal , Regulação da Expressão Gênica , Humanos , Recém-Nascido , Camundongos , Técnicas de Cultura de Órgãos , Organoides/química , Organoides/citologia , Organoides/microbiologia , Filogenia , Nascimento a Termo
7.
Gut ; 68(2): 289-300, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30377189

RESUMO

OBJECTIVE: Campylobacter jejuni produces a genotoxin, cytolethal distending toxin (CDT), which has DNAse activity and causes DNA double-strand breaks. Although C. jejuni infection has been shown to promote intestinal inflammation, the impact of this bacterium on carcinogenesis has never been examined. DESIGN: Germ-free (GF) ApcMin/+ mice, fed with 1% dextran sulfate sodium, were used to test tumorigenesis potential of CDT-producing C. jejuni. Cells and enteroids were exposed to bacterial lysates to determine DNA damage capacity via γH2AX immunofluorescence, comet assay and cell cycle assay. To examine the interplay of CDT-producing C. jejuni, gut microbiome and host in tumorigenesis, colonic RNA-sequencing and faecal 16S rDNA sequencing were performed. Rapamycin was administrated to investigate the prevention of CDT-producing C. jejuni-induced tumorigenesis. RESULTS: GF ApcMin/+ mice colonised with human clinical isolate C. jejuni81-176 developed significantly more and larger tumours when compared with uninfected mice. C. jejuni with a mutated cdtB subunit, mutcdtB, attenuated C. jejuni-induced tumorigenesis in vivo and decreased DNA damage response in cells and enteroids. C. jejuni infection induced expression of hundreds of colonic genes, with 22 genes dependent on the presence of cdtB. The C. jejuni-infected group had a significantly different microbial gene expression profile compared with the mutcdtB group as shown by metatranscriptomic data, and different microbial communities as measured by 16S rDNA sequencing. Finally, rapamycin could diminish the tumorigenic capability of C. jejuni. CONCLUSION: Human clinical isolate C. jejuni 81-176 promotes colorectal cancer and induces changes in microbial composition and transcriptomic responses, a process dependent on CDT production.


Assuntos
Toxinas Bacterianas/toxicidade , Campylobacter jejuni/genética , Campylobacter jejuni/patogenicidade , Carcinogênese , Neoplasias Colorretais/genética , Neoplasias Colorretais/microbiologia , Animais , Campylobacter jejuni/isolamento & purificação , Dano ao DNA , DNA de Neoplasias/análise , Fezes/microbiologia , Microbioma Gastrointestinal , Expressão Gênica , Humanos , Camundongos , RNA Neoplásico/análise , Sirolimo/farmacologia , Transcriptoma
8.
J Med Entomol ; 51(5): 1087-90, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25276942

RESUMO

Ticks were sampled at nine locations throughout North Dakota during early summer of 2010, using flagging techniques and small mammals trapping. In total, 1,762 ticks were collected from eight of the nine locations. The dominant species were Dermacentor variabilis (Say) (82%), found throughout the state, and Ixodes scapularis Say (17%), found in northeastern counties. A few nymphal and adult I. scapularis tested positive for Borrelia burgdorferi (3%) and Anaplasma phagocytophilum (8%). This is the first report of I. scapularis and associated pathogens occurring in North Dakota and provides evidence for continued westward expansion of this important vector tick species in the United States.


Assuntos
Ixodidae/microbiologia , Ixodidae/fisiologia , Animais , Demografia , North Dakota , Doenças dos Roedores/epidemiologia , Doenças dos Roedores/parasitologia , Roedores , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/parasitologia , Infestações por Carrapato/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA