Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiology (Reading) ; 168(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35333706

RESUMO

It is important to understand the basis of thermotolerance in yeasts to broaden their application in industrial biotechnology. The capacity to run bioprocesses at temperatures above 40 °C is of great interest but this is beyond the growth range of most of the commonly used yeast species. In contrast, some industrial yeasts such as Kluyveromyces marxianus can grow at temperatures of 45 °C or higher. Such species are valuable for direct use in industrial biotechnology and as a vehicle to study the genetic and physiological basis of yeast thermotolerance. In previous work, we reported that evolutionarily young genes disproportionately changed expression when yeast were growing under stressful conditions and postulated that such genes could be important for long-term adaptation to stress. Here, we tested this hypothesis in K. marxianus by identifying and studying species-specific genes that showed increased expression during high-temperature growth. Twelve such genes were identified and 11 were successfully inactivated using CRISPR-mediated mutagenesis. One gene, KLMX_70384, is required for competitive growth at high temperature, supporting the hypothesis that evolutionary young genes could play roles in adaptation to harsh environments. KLMX_70384 is predicted to encode an 83 aa peptide, and RNA sequencing and ribo-sequencing were used to confirm transcription and translation of the gene. The precise function of KLMX_70384 remains unknown but some features are suggestive of RNA-binding activity. The gene is located in what was previously considered an intergenic region of the genome, which lacks homologues in other yeasts or in databases. Overall, the data support the hypothesis that genes that arose de novo in K. marxianus after the speciation event that separated K. marxianus and K. lactis contribute to some of its unique traits.


Assuntos
Kluyveromyces , Termotolerância , Temperatura Alta , Temperatura , Termotolerância/genética
2.
BMC Genomics ; 22(1): 688, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34551706

RESUMO

BACKGROUND: Eukaryotic organisms, like the model yeast S. cerevisiae, have linear chromosomes that facilitate organization and protection of nuclear DNA. A recent work described a stepwise break/repair method that enabled fusion of the 16 chromosomes of S. cerevisiae into a single large chromosome. Construction of this strain resulted in the removal of 30 of 32 telomeres, over 300 kb of subtelomeric DNA, and 107 subtelomeric ORFs. Despite these changes, characterization of the single chromosome strain uncovered modest phenotypes compared to a reference strain. RESULTS: This study further characterized the single chromosome strain and found that it exhibited a longer lag phase, increased doubling time, and lower final biomass concentration compared with a reference strain when grown on YPD. These phenotypes were amplified when ethanol was added to the medium or used as the sole carbon source. RNAseq analysis showed poor induction of genes involved in diauxic shift, ethanol metabolism, and fatty-acid ß-oxidation during growth on ethanol compared to the reference strain. Enzyme-constrained metabolic modeling identified decreased flux through the enzymes that are encoded by these poorly induced genes as a likely cause of diminished biomass accumulation. The diminished growth on ethanol for the single chromosome strain was rescued by nicotinamide, an inhibitor of sirtuin family deacetylases, which have been shown to silence gene expression in heterochromatic regions. CONCLUSIONS: Our results indicate that sirtuin-mediated silencing in the single chromosome strain interferes with growth on non-fermentable carbon sources. We propose that the removal of subtelomeric DNA that would otherwise be bound by sirtuins leads to silencing at other loci in the single chromosome strain. Further, we hypothesize that the poorly induced genes in the single chromosome strain during ethanol growth could be silenced by sirtuins in wildtype S. cerevisiae during growth on glucose.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Tolerância a Medicamentos , Etanol , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Telômero/genética
3.
Nat Commun ; 11(1): 2144, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358542

RESUMO

The Saccharomycotina subphylum (budding yeasts) spans 400 million years of evolution and includes species that thrive in diverse environments. To study niche-adaptation, we identify changes in gene expression in three divergent yeasts grown in the presence of various stressors. Duplicated and non-conserved genes are significantly more likely to respond to stress than genes that are conserved as single-copy orthologs. Next, we develop a sorting method that considers evolutionary origin and duplication timing to assign an evolutionary age to each gene. Subsequent analysis reveals that genes that emerged in recent evolutionary time are enriched amongst stress-responsive genes for each species. This gene expression pattern suggests that budding yeasts share a stress adaptation mechanism, whereby selective pressure leads to functionalization of young genes to improve growth in adverse conditions. Further characterization of young genes from species that thrive in harsh environments can inform the design of more robust strains for biotechnology.


Assuntos
Saccharomycetales/metabolismo , Ascomicetos/genética , Ascomicetos/metabolismo , Biotecnologia/métodos , Genoma Fúngico/genética , Filogenia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
PLoS Genet ; 12(7): e1006216, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27463097

RESUMO

During mitosis chromosomes are condensed to facilitate their segregation, through a process mediated by the condensin complex. Although several factors that promote maximal condensin activity during mitosis have been identified, the mechanisms that downregulate condensin activity during interphase are largely unknown. Here, we demonstrate that Ycg1, the Cap-G subunit of budding yeast condensin, is cell cycle-regulated with levels peaking in mitosis and decreasing as cells enter G1 phase. This cyclical expression pattern is established by a combination of cell cycle-regulated transcription and constitutive degradation. Interestingly, overexpression of YCG1 and mutations that stabilize Ycg1 each result in delayed cell-cycle entry and an overall proliferation defect. Overexpression of no other condensin subunit impacts the cell cycle, suggesting that Ycg1 is limiting for condensin complex formation. Consistent with this possibility, we find that levels of intact condensin complex are reduced in G1 phase compared to mitosis, and that increased Ycg1 expression leads to increases in both levels of condensin complex and binding to chromatin in G1. Together, these results demonstrate that Ycg1 levels limit condensin function in interphase cells, and suggest that the association of condensin with chromosomes must be reduced following mitosis to enable efficient progression through the cell cycle.


Assuntos
Adenosina Trifosfatases/genética , Sistemas de Transporte de Aminoácidos Neutros/genética , Segregação de Cromossomos/genética , Proteínas de Ligação a DNA/genética , Mitose/genética , Complexos Multiproteicos/genética , Proteínas de Saccharomyces cerevisiae/genética , Ciclo Celular/genética , Cromatina/genética , Cromossomos/genética , Interfase/genética , Fosforilação , Saccharomyces cerevisiae/genética
5.
Bioorg Med Chem ; 24(12): 2707-15, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27156192

RESUMO

C-terminal Binding Protein (CtBP) is a transcriptional co-regulator that downregulates the expression of many tumor-suppressor genes. Utilizing a crystal structure of CtBP with its substrate 4-methylthio-2-oxobutyric acid (MTOB) and NAD(+) as a guide, we have designed, synthesized, and tested a series of small molecule inhibitors of CtBP. From our first round of compounds, we identified 2-(hydroxyimino)-3-phenylpropanoic acid as a potent CtBP inhibitor (IC50=0.24µM). A structure-activity relationship study of this compound further identified the 4-chloro- (IC50=0.18µM) and 3-chloro- (IC50=0.17µM) analogues as additional potent CtBP inhibitors. Evaluation of the hydroxyimine analogues in a short-term cell growth/viability assay showed that the 4-chloro- and 3-chloro-analogues are 2-fold and 4-fold more potent, respectively, than the MTOB control. A functional cellular assay using a CtBP-specific transcriptional readout revealed that the 4-chloro- and 3-chloro-hydroxyimine analogues were able to block CtBP transcriptional repression activity. This data suggests that substrate-competitive inhibition of CtBP dehydrogenase activity is a potential mechanism to reactivate tumor-suppressor gene expression as a therapeutic strategy for cancer.


Assuntos
Oxirredutases do Álcool/antagonistas & inibidores , Proteínas de Ligação a DNA/antagonistas & inibidores , Oximas/química , Oximas/farmacologia , Fenilpropionatos/química , Fenilpropionatos/farmacologia , Oxirredutases do Álcool/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Desenho de Fármacos , Halogenação , Humanos , Metionina/análogos & derivados , Metionina/metabolismo , Modelos Moleculares , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Oximas/síntese química , Fenilpropionatos/síntese química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA