Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37873470

RESUMO

The Mechanism of Action (MoA) of a drug is generally represented as a small, non-tissue-specific repertoire of high-affinity binding targets. Yet, drug activity and polypharmacology are increasingly associated with a broad range of off-target and tissue-specific effector proteins. To address this challenge, we have implemented an efficient integrative experimental and computational framework leveraging the systematic generation and analysis of drug perturbational profiles representing >700 FDA-approved and experimental oncology drugs, in cell lines selected as high-fidelity models of 23 aggressive tumor subtypes. Protein activity-based analyses revealed highly reproducible, drug-mediated modulation of tissue-specific targets, leading to generation of a proteome-wide polypharmacology map, characterization of MoA-related drug clusters and off-target effects, and identification and experimental validation of novel, tissue-specific inhibitors of undruggable oncoproteins. The proposed framework, which is easily extended to elucidating the MoA of novel small-molecule libraries, could help support more systematic and quantitative approaches to precision oncology.

2.
Cancer Discov ; 13(6): 1386-1407, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37061969

RESUMO

Predicting in vivo response to antineoplastics remains an elusive challenge. We performed a first-of-kind evaluation of two transcriptome-based precision cancer medicine methodologies to predict tumor sensitivity to a comprehensive repertoire of clinically relevant oncology drugs, whose mechanism of action we experimentally assessed in cognate cell lines. We enrolled patients with histologically distinct, poor-prognosis malignancies who had progressed on multiple therapies, and developed low-passage, patient-derived xenograft models that were used to validate 35 patient-specific drug predictions. Both OncoTarget, which identifies high-affinity inhibitors of individual master regulator (MR) proteins, and OncoTreat, which identifies drugs that invert the transcriptional activity of hyperconnected MR modules, produced highly significant 30-day disease control rates (68% and 91%, respectively). Moreover, of 18 OncoTreat-predicted drugs, 15 induced the predicted MR-module activity inversion in vivo. Predicted drugs significantly outperformed antineoplastic drugs selected as unpredicted controls, suggesting these methods may substantively complement existing precision cancer medicine approaches, as also illustrated by a case study. SIGNIFICANCE: Complementary precision cancer medicine paradigms are needed to broaden the clinical benefit realized through genetic profiling and immunotherapy. In this first-in-class application, we introduce two transcriptome-based tumor-agnostic systems biology tools to predict drug response in vivo. OncoTarget and OncoTreat are scalable for the design of basket and umbrella clinical trials. This article is highlighted in the In This Issue feature, p. 1275.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Transcriptoma , Medicina de Precisão/métodos , Oncologia/métodos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
3.
Cancer Discov ; 13(2): 386-409, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36374194

RESUMO

Prioritizing treatments for individual patients with cancer remains challenging, and performing coclinical studies using patient-derived models in real time is often unfeasible. To circumvent these challenges, we introduce OncoLoop, a precision medicine framework that predicts drug sensitivity in human tumors and their preexisting high-fidelity (cognate) model(s) by leveraging drug perturbation profiles. As a proof of concept, we applied OncoLoop to prostate cancer using genetically engineered mouse models (GEMM) that recapitulate a broad spectrum of disease states, including castration-resistant, metastatic, and neuroendocrine prostate cancer. Interrogation of human prostate cancer cohorts by Master Regulator (MR) conservation analysis revealed that most patients with advanced prostate cancer were represented by at least one cognate GEMM-derived tumor (GEMM-DT). Drugs predicted to invert MR activity in patients and their cognate GEMM-DTs were successfully validated in allograft, syngeneic, and patient-derived xenograft (PDX) models of tumors and metastasis. Furthermore, OncoLoop-predicted drugs enhanced the efficacy of clinically relevant drugs, namely, the PD-1 inhibitor nivolumab and the AR inhibitor enzalutamide. SIGNIFICANCE: OncoLoop is a transcriptomic-based experimental and computational framework that can support rapid-turnaround coclinical studies to identify and validate drugs for individual patients, which can then be readily adapted to clinical practice. This framework should be applicable in many cancer contexts for which appropriate models and drug perturbation data are available. This article is highlighted in the In This Issue feature, p. 247.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Camundongos , Animais , Humanos , Neoplasias de Próstata Resistentes à Castração/patologia , Medicina de Precisão , Antagonistas de Receptores de Andrógenos , Transcriptoma , Perfilação da Expressão Gênica , Nitrilas , Receptores Androgênicos/genética
4.
Cell Rep Med ; 3(1): 100492, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35106508

RESUMO

The Columbia Cancer Target Discovery and Development (CTD2) Center is developing PANACEA, a resource comprising dose-responses and RNA sequencing (RNA-seq) profiles of 25 cell lines perturbed with ∼400 clinical oncology drugs, to study a tumor-specific drug mechanism of action. Here, this resource serves as the basis for a DREAM Challenge assessing the accuracy and sensitivity of computational algorithms for de novo drug polypharmacology predictions. Dose-response and perturbational profiles for 32 kinase inhibitors are provided to 21 teams who are blind to the identity of the compounds. The teams are asked to predict high-affinity binding targets of each compound among ∼1,300 targets cataloged in DrugBank. The best performing methods leverage gene expression profile similarity analysis as well as deep-learning methodologies trained on individual datasets. This study lays the foundation for future integrative analyses of pharmacogenomic data, reconciliation of polypharmacology effects in different tumor contexts, and insights into network-based assessments of drug mechanisms of action.


Assuntos
Neoplasias/tratamento farmacológico , Polifarmacologia , Algoritmos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Redes Neurais de Computação , Proteínas Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica
5.
Mol Cancer Ther ; 20(8): 1422-1430, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34108263

RESUMO

The peripheral T-cell lymphomas (PTCL) could be considered the prototypical epigenetic disease. As a disease, they are uniquely sensitive to histone deacetylase (HDAC) and DNA methyltransferase (DNMT) inhibitors, both alone and in combination, are characterized by a host of mutations in epigenetic genes, and can develop spontaneously in genetically engineered murine models predicated on established recurring mutations in (RHOAG17V) and TET2, an epigenetic gene governing DNA methylation. Given the clinical benefit of HDAC inhibitors (HDACi) and hypomethlyation agents alone and in combination in PTCL, we sought to explore a mechanistic basis for these agents in PTCL. Herein, we reveal profound class synergy between HDAC and DNMT inhibitors in PTCL, and that the combination induces degrees of gene expression that are substantially different and more extensive than that observed for the single agents. A prominent signature of the combination relates to the transcriptional induction of cancer testis antigens and genes involved in the immune response. Interestingly, TBX21 and STAT4, master regulators of TH1 differentiation, were among the genes upregulated by the combination, suggesting the induction of a TH1-like phenotype. Moreover, suppression of genes involved in cholesterol metabolism and the matrisome were also identified. We believe that these data provide a strong rationale for clinical studies, and future combinations leveraging an immunoepigenetic platform.


Assuntos
Antígenos de Neoplasias/genética , Biomarcadores Tumorais/metabolismo , Epigenoma , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Imunidade/genética , Linfoma de Células T/patologia , Testículo/metabolismo , Antimetabólitos Antineoplásicos/farmacologia , Apoptose , Azacitidina/farmacologia , Biomarcadores Tumorais/genética , Proliferação de Células , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , Metilação de DNA , Epigênese Genética , Perfilação da Expressão Gênica , Inibidores de Histona Desacetilases/farmacologia , Humanos , Linfoma de Células T/tratamento farmacológico , Linfoma de Células T/genética , Linfoma de Células T/imunologia , Masculino , Células Tumorais Cultivadas
7.
Cell ; 184(2): 334-351.e20, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33434495

RESUMO

Despite considerable efforts, the mechanisms linking genomic alterations to the transcriptional identity of cancer cells remain elusive. Integrative genomic analysis, using a network-based approach, identified 407 master regulator (MR) proteins responsible for canalizing the genetics of individual samples from 20 cohorts in The Cancer Genome Atlas (TCGA) into 112 transcriptionally distinct tumor subtypes. MR proteins could be further organized into 24 pan-cancer, master regulator block modules (MRBs), each regulating key cancer hallmarks and predictive of patient outcome in multiple cohorts. Of all somatic alterations detected in each individual sample, >50% were predicted to induce aberrant MR activity, yielding insight into mechanisms linking tumor genetics and transcriptional identity and establishing non-oncogene dependencies. Genetic and pharmacological validation assays confirmed the predicted effect of upstream mutations and MR activity on downstream cellular identity and phenotype. Thus, co-analysis of mutational and gene expression profiles identified elusive subtypes and provided testable hypothesis for mechanisms mediating the effect of genetic alterations.


Assuntos
Neoplasias/genética , Transcrição Gênica , Adenocarcinoma/genética , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Genoma Humano , Células HEK293 , Humanos , Camundongos Nus , Mutação/genética , Reprodutibilidade dos Testes
8.
Chembiochem ; 21(21): 3047-3050, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32865878

RESUMO

Realizing the promise of precision medicine will require breaking down communication barriers between genomic, screening and literature "big data." We discuss the opportunities and challenges of reconciling data science approaches with the scientific method and the critical role of chemical biologists as a bridge between data and mechanism. Finally we propose next steps on the road to precision medicine and give examples of new tools designed to catalyze these steps.


Assuntos
Big Data , Medicina de Precisão , Bases de Dados Factuais , Humanos
9.
Genes Chromosomes Cancer ; 59(11): 639-651, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32614991

RESUMO

While pralatrexate (PDX) has been successfully developed for the treatment of T-cell lymphoma, the mechanistic basis for its T-cell selectivity and acquired resistance remains elusive. In an effort to potentially identify synergistic combinations that might circumnavigate or delay acquired PDX resistance, we generated resistant cells lines over a broad concentration range. PDX-resistant cell lines H9-12 and H9-200 were developed, each exhibiting an IC50 of 35 and over 1000 nM, respectively. These lines were established in vitro from parental H9 cells. Expression analysis of the proteins known to be important determinants of antifolate pharmacology revealed increase expression of dihydrofolate reductase (DHFR) due to gene amplification, and reduced folate carrier1 downregulation, as the putative mechanisms of resistance in H9-12 and H9-200 cells. Cross resistance was only seen with methotrexate but not with romidepsin, azacitidine (AZA), decitabine, gemcitabine, doxorubicin, or bortezomib. Resistance to PDX was reversed by pretreatment with hypomethylating agents in a concentration-dependent fashion. Comparison of gene expression profiles of parental and resistant cell lines confirmed markedly different patterns of gene expression, and identified the dual specificity phosphatase four (DUSP4) as one of the molecular target of PDX activity. Reduced STAT5 phosphorylation following exposure to PDX was observed in the H9 but not in the H9-12 and H9-200 cells. These data suggest that combination with hypomethylating agents could be potent, and that DUSP4 and STAT5 could represent putative biomarkers of PDX activity.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética , Linfoma de Células T/genética , Aminopterina/análogos & derivados , Aminopterina/toxicidade , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Metilação de DNA , Fosfatases de Especificidade Dupla/metabolismo , Humanos , Concentração Inibidora 50 , Linfoma de Células T/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Fator de Transcrição STAT5/metabolismo
10.
bioRxiv ; 2020 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-32511361

RESUMO

Most antiviral agents are designed to target virus-specific proteins and mechanisms rather than the host cell proteins that are critically dysregulated following virus-mediated reprogramming of the host cell transcriptional state. To overcome these limitations, we propose that elucidation and pharmacologic targeting of host cell Master Regulator proteins-whose aberrant activities govern the reprogramed state of coronavirus-infected cells-presents unique opportunities to develop novel mechanism-based therapeutic approaches to antiviral therapy, either as monotherapy or as a complement to established treatments. Specifically, we propose that a small module of host cell Master Regulator proteins (ViroCheckpoint) is hijacked by the virus to support its efficient replication and release. Conventional methodologies are not well suited to elucidate these potentially targetable proteins. By using the VIPER network-based algorithm, we successfully interrogated 12h, 24h, and 48h signatures from Calu-3 lung adenocarcinoma cells infected with SARS-CoV, to elucidate the time-dependent reprogramming of host cells and associated Master Regulator proteins. We used the NYS CLIA-certified Darwin OncoTreat algorithm, with an existing database of RNASeq profiles following cell perturbation with 133 FDA-approved and 195 late-stage experimental compounds, to identify drugs capable of virtually abrogating the virus-induced Master Regulator signature. This approach to drug prioritization and repurposing can be trivially extended to other viral pathogens, including SARS-CoV-2, as soon as the relevant infection signature becomes available.

11.
Nat Commun ; 9(1): 1471, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29662057

RESUMO

We and others have shown that transition and maintenance of biological states is controlled by master regulator proteins, which can be inferred by interrogating tissue-specific regulatory models (interactomes) with transcriptional signatures, using the VIPER algorithm. Yet, some tissues may lack molecular profiles necessary for interactome inference (orphan tissues), or, as for single cells isolated from heterogeneous samples, their tissue context may be undetermined. To address this problem, we introduce metaVIPER, an algorithm designed to assess protein activity in tissue-independent fashion by integrative analysis of multiple, non-tissue-matched interactomes. This assumes that transcriptional targets of each protein will be recapitulated by one or more available interactomes. We confirm the algorithm's value in assessing protein dysregulation induced by somatic mutations, as well as in assessing protein activity in orphan tissues and, most critically, in single cells, thus allowing transformation of noisy and potentially biased RNA-Seq signatures into reproducible protein-activity signatures.


Assuntos
Algoritmos , Neoplasias Encefálicas/genética , Linhagem da Célula/genética , Redes Reguladoras de Genes , Glioblastoma/genética , Fatores de Transcrição/genética , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem da Célula/imunologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Camundongos , Especificidade de Órgãos , Mapeamento de Interação de Proteínas , Análise de Célula Única/métodos , Fatores de Transcrição/imunologia
12.
Cell Metab ; 21(2): 286-298, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25651181

RESUMO

Mice deficient in the nuclear hormone receptor RORγt have defective development of thymocytes, lymphoid organs, Th17 cells, and type 3 innate lymphoid cells. RORγt binds to oxysterols derived from cholesterol catabolism, but it is not clear whether these are its natural ligands. Here, we show that sterol lipids are necessary and sufficient to drive RORγt-dependent transcription. We combined overexpression, RNAi, and genetic deletion of metabolic enzymes to study RORγ-dependent transcription. Our results are consistent with the RORγt ligand(s) being a cholesterol biosynthetic intermediate (CBI) downstream of lanosterol and upstream of zymosterol. Analysis of lipids bound to RORγ identified molecules with molecular weights consistent with CBIs. Furthermore, CBIs stabilized the RORγ ligand-binding domain and induced coactivator recruitment. Genetic deletion of metabolic enzymes upstream of the RORγt-ligand(s) affected the development of lymph nodes and Th17 cells. Our data suggest that CBIs play a role in lymphocyte development potentially through regulation of RORγt.


Assuntos
Linfócitos/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Esteróis/metabolismo , Animais , Linhagem Celular , Colesterol/biossíntese , Drosophila melanogaster/citologia , Células HEK293 , Humanos , Ligantes , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Esterol 14-Desmetilase/deficiência , Esterol 14-Desmetilase/metabolismo , Esteróis/química , Células Th17
13.
J Am Chem Soc ; 136(52): 18034-43, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25514603

RESUMO

This article reports the design, synthesis, and evaluation of a novel class of molecules of intermediate size (approximately 7000 Da), which possess both the targeting and effector functions of antibodies. These compounds­called synthetic antibody mimics targeting prostate cancer (SyAM-Ps)­bind simultaneously to prostate-specific membrane antigen and Fc gamma receptor I, thus eliciting highly selective cancer cell phagocytosis. SyAMs have the potential to combine the advantages of both small-molecule and biologic therapies, and may address many drawbacks associated with available treatments for cancer and other diseases.


Assuntos
Anticorpos/metabolismo , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/farmacologia , Desenho de Fármacos , Antígenos de Superfície/química , Antígenos de Superfície/metabolismo , Materiais Biomiméticos/metabolismo , Linhagem Celular Tumoral , Técnicas de Química Sintética , Glutamato Carboxipeptidase II/química , Glutamato Carboxipeptidase II/metabolismo , Humanos , Simulação de Acoplamento Molecular , Peso Molecular , Fagocitose/efeitos dos fármacos , Conformação Proteica , Receptores de IgG/metabolismo
14.
Chem Sci ; 5(6): 2311-2317, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25379167

RESUMO

Here we report on the structure-based optimization of antibody-recruiting molecules targeting HIV gp120 (ARM-H). These studies have leveraged a combination of medicinal chemistry, biochemical and cellular assay analysis, and computation. Our findings have afforded an optimized analog of ARM-H, which is ~1000 fold more potent in gp120-binding and MT-2 antiviral assays than our previously reported derivative. Furthermore, computational analysis, taken together with experimental data, provides evidence that azaindole- and indole-based attachment inhibitors bind gp120 at an accessory hydrophobic pocket beneath the CD4-binding site and can also adopt multiple unique binding modes in interacting with gp120. These results are likely to prove highly enabling in the development of novel HIV attachment inhibitors, and more broadly, they suggest novel applications for ARMs as probes of conformationally flexible systems.

15.
ACS Chem Biol ; 8(11): 2404-11, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24053626

RESUMO

The ability to profile the prevalence and functional activity of endogenous antibodies is of vast clinical and diagnostic importance. Serum antibodies are an important class of biomarkers and are also crucial elements of immune responses elicited by natural disease-causing agents as well as vaccines. In particular, materials for manipulating and/or enhancing immune responses toward disease-causing cells or viruses have exhibited significant promise for therapeutic applications. Antibody-recruiting molecules (ARMs), bifunctional organic molecules that redirect endogenous antibodies to pathological targets, thereby increasing their recognition and clearance by the immune system, have proven particularly interesting. Notably, although ARMs capable of hijacking antibodies against oligosaccharides and electron-poor aromatics have proven efficacious, systematic comparisons of the prevalence and effectiveness of natural anti-hapten antibody populations have not appeared in the literature. Herein we report head-to-head comparisons of three chemically simple antigens, which are known ligands for endogenous antibodies. Thus, we have chemically synthesized bifunctional molecules containing 2,4-dinitrophenyl (DNP), phosphorylcholine (PC), and rhamnose. We have then used a combination of ELISA, flow cytometry, and cell-viability assays to compare these antigens in terms of their abilities both to recruit natural antibody from human serum and also to direct serum-dependent cytotoxicity against target cells. These studies have revealed rhamnose to be the most efficacious of the synthetic antigens examined. Furthermore, analysis of 122 individual serum samples has afforded comprehensive insights into population-wide prevalence and isotype distributions of distinct anti-hapten antibody populations. In addition to providing a general platform for comparing and studying anti-hapten antibodies, these studies serve as a useful starting point for the optimization of antibody-recruiting molecules and other synthetic strategies for modulating human immunity.


Assuntos
Anticorpos/metabolismo , Antígenos/metabolismo , Indústria Farmacêutica , Fatores Imunológicos/síntese química , Animais , Anticorpos/química , Ligação Competitiva , Células CHO , Sobrevivência Celular , Cricetulus , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Fatores Imunológicos/química , Fatores Imunológicos/metabolismo , Estrutura Molecular , Peso Molecular , Fenilacetatos/metabolismo , Fosforilcolina/metabolismo , Ligação Proteica , Ramnose/metabolismo
16.
J Am Chem Soc ; 135(33): 12429-33, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23931147

RESUMO

Methylglyoxal (MGO), a dicarbonyl metabolite produced by all living cells, has been associated with a number of human diseases. However, studies of the role(s) MGO plays biologically have been handicapped by a lack of direct methods for its monitoring and detection. To address this limitation, we have developed a fluorescent sensor (methyl diaminobenzene-BODIPY, or "MBo") that can detect MGO under physiological conditions. We show that MBo is selective for MGO over other biologically relevant dicarbonyls and is suitable for detecting MGO in complex environments, including that of living cells. In addition, we demonstrate MBo's utility in estimating plasma concentrations of MGO. The results reported herein have the potential to advance both clinical and basic science research and practice.


Assuntos
Técnicas de Química Analítica/instrumentação , Aldeído Pirúvico/análise , Compostos de Boro/química , Sobrevivência Celular , Células HeLa , Humanos , Cinética , Imagem Molecular , Aldeído Pirúvico/química , Espectrometria de Fluorescência
17.
J Am Chem Soc ; 135(16): 6092-9, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23544844

RESUMO

Three-component systems are often more complex than their two-component counterparts. Although the reversible association of three components in solution is critical for a vast array of chemical and biological processes, no general physical picture of such systems has emerged. Here we have developed a general, comprehensive framework for understanding ternary complex equilibria, which relates directly to familiar concepts such as EC50 and IC50 from simpler (binary complex) equilibria. Importantly, application of our model to data from the published literature has enabled us to achieve new insights into complex systems ranging from coagulation to therapeutic dosing regimens for monoclonal antibodies. We also provide an Excel spreadsheet to assist readers in both conceptualizing and applying our models. Overall, our analysis has the potential to render complex three-component systems--which have previously been characterized as "analytically intractable"--readily comprehensible to theoreticians and experimentalists alike.


Assuntos
Ligação Proteica , Algoritmos , Anticorpos Monoclonais/química , Citotoxicidade Celular Dependente de Anticorpos , Anticoagulantes/farmacologia , Relação Dose-Resposta a Droga , Ensaios de Triagem em Larga Escala , Humanos , Cinética , Masculino , Modelos Estatísticos , Neoplasias da Próstata/diagnóstico , Receptor EphA2/química , Receptores Fc/química , Soluções
18.
Anal Chem ; 80(20): 7670-7, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18811215

RESUMO

Analytical gold electrodes were polished mechanically and electrochemically and the true area of the electrode surface was measured by quantitative oxidative/reductive cycling of the electrode. A roughness factor for each electrode was determined from the ratio of the true area to the geometric area. The roughness is fully described by a combination of microscopic roughness (up to tens of nanometers) and macroscopic roughness (on the order of hundreds of nanometers) terms. The electrodes were then derivatized with a self-assembled monolayer (SAM) of dodecanethiol or a thioalkane azacrown and characterized by impedance spectroscopy. The behavior of the electrodes was modeled with either a Helmholtz or Randles equivalent circuit (depending on the SAM used) in which the capacitance was replaced with a constant phase element. From the model, an effective capacitance and an alpha factor that quantifies the nonideality of the SAM capacitance was obtained. The effective capacitance divided by the roughness factor yields the capacitance per unit true area, which is only a function of microscopic roughness. The relationship between this capacitance and the alpha factor indicates that microscopic roughness predominantly affects the nonideality of the film while macroscopic roughness predominantly affects the magnitude of the film's capacitance. Understanding the contribution of the electrode topography to the magnitude and ideality of the SAM capacitance is important in the construction of SAM-based capacitive sensors because it predicts the importance of electrode-electrode variations.


Assuntos
Ouro/química , Alcanos/química , Eletroquímica , Eletrodos , Microscopia de Força Atômica , Compostos de Sulfidrila/química , Propriedades de Superfície
19.
Langmuir ; 24(9): 5140-5, 2008 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-18393555

RESUMO

Multilayered photocurrent generating thin films were fabricated by templated noncovalent assembly via stepwise assembly of molecular components. Each of films I-IV contained an underlying self-assembled monolayer (SAM) consisting of an alkanethiol linked covalently to a 2,6-dicarboxypyridine ligand that served as a binding site for attaching additional molecular components. The SAM subsequently was functionalized by sequential deposition of Cu(II), Co(II), or Fe(III) ions followed by a variety of substituted 2,6-dicarboxypyridine ligands as a means to incorporate one or more layers of pyrene chromophores into the film. The films were characterized by contact angle measurements, ellipsometry, grazing incidence IR, cyclic voltammetry, and impedance spectroscopy after deposition of each layer, confirming the formation of ordered, stable layers. Following incorporation into a three-electrode system, photoexcitation resulted in the generation of a cathodic photocurrent in the presence of methyl viologen and an anodic photocurrent in the presence of triethanolamine. Using this strategy, systems were fabricated that produced up to 89 nA/cm(2) of reproducible photocurrent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA