Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS EST Air ; 1(3): 200-222, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38482269

RESUMO

The Alaskan Layered Pollution And Chemical Analysis (ALPACA) field experiment was a collaborative study designed to improve understanding of pollution sources and chemical processes during winter (cold climate and low-photochemical activity), to investigate indoor pollution, and to study dispersion of pollution as affected by frequent temperature inversions. A number of the research goals were motivated by questions raised by residents of Fairbanks, Alaska, where the study was held. This paper describes the measurement strategies and the conditions encountered during the January and February 2022 field experiment, and reports early examples of how the measurements addressed research goals, particularly those of interest to the residents. Outdoor air measurements showed high concentrations of particulate matter and pollutant gases including volatile organic carbon species. During pollution events, low winds and extremely stable atmospheric conditions trapped pollution below 73 m, an extremely shallow vertical scale. Tethered-balloon-based measurements intercepted plumes aloft, which were associated with power plant point sources through transport modeling. Because cold climate residents spend much of their time indoors, the study included an indoor air quality component, where measurements were made inside and outside a house to study infiltration and indoor sources. In the absence of indoor activities such as cooking and/or heating with a pellet stove, indoor particulate matter concentrations were lower than outdoors; however, cooking and pellet stove burns often caused higher indoor particulate matter concentrations than outdoors. The mass-normalized particulate matter oxidative potential, a health-relevant property measured here by the reactivity with dithiothreiol, of indoor particles varied by source, with cooking particles having less oxidative potential per mass than pellet stove particles.

2.
J Chem Phys ; 149(12): 124201, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30278677

RESUMO

The Finnish Meteorological Institute-Aerosol Cloud Interaction Tube (FMI-ACIT) is a multi-purpose instrument for investigating atmospherically relevant interactions between aerosol particles and water vapor under defined laboratory conditions. This work introduces an experimental setup of FMI-ACIT for investigation of the aerosol activation and the droplet growth under supersaturated conditions. Several simulations and experimental tests were conducted to find out what the proper operational parameters are. To verify the ability of FMI-ACIT to perform as a cloud condensation nuclei (CCN) counter, activation experiments were executed using size selected ammonium sulfate [(NH4)2SO4] particles in the size range of 10-300 nm. Supersaturations from 0.18% to 1.25% were tested by experiments with different temperature gradients. Those showed that FMI-ACIT can effectively measure CCN in this range. Measured droplet size distributions at supersaturations 0.18% and 1.25% are in good agreement with those determined by a droplet growth model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA