Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 838(Pt 1): 155965, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35588805

RESUMO

Slow release urea has been widely tested in recent past as an effective method to enhance the crop productivity with fewer environmental concerns. However, very few research studies have been performed using micronutrients as a source of slow release of urea nitrogen. A laboratory and field study were carried out to check the agronomic effects of zinc oxide nanoparticles and its bulk salt coatings on urea prills on wheat (Triticum aestivum L.). Different concentrations of zinc oxide nanoparticles (0.25, 0.5 and 4% elemental zinc) were coated on urea prills to slow down the release rate. Bulk zinc oxide salt (ZnO) with similar concentrations was also used in parallel to make a comparison between nano and bulk salt. The SEM of zinc oxide nanoparticles clearly depicted zinc oxide nanoparticles size within a range of 50-90 nm. The XRD and FTIR spectrums also showed its characteristics peak at designated positions. Field study revealed than 0.5% zinc oxide nanoparticles coated urea boosted the crop growth and yield in comparison to the bulk zinc oxide coated urea having similar zinc concentrations, i.e., 0.25%, 0.5% and 4% elemental zinc. The plant parameters like plant height, root length, root volume, grain yield and dry matter weight were significantly increased due to application of zinc oxide nanoparticles.


Assuntos
Nanopartículas , Oligoelementos , Óxido de Zinco , Fertilizantes/análise , Micronutrientes , Solo , Triticum , Ureia/farmacologia , Zinco/análise , Óxido de Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA