Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1324085, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903420

RESUMO

Sugarcane aphid has emerged as a major pest of sorghum recently, and a few sorghum accessions were identified for resistance to this aphid so far. However, the molecular and genetic mechanisms underlying this resistance are still unclear. To understand these mechanisms, transcriptomics was conducted in resistant Tx2783 and susceptible BTx623 sorghum genotypes infested with sugarcane aphids. A principal component analysis revealed differences in the transcriptomic profiles of the two genotypes. The pathway analysis of the differentially expressed genes (DEGs) indicated the upregulation of a set of genes related to signal perception (nucleotide-binding, leucine-rich repeat proteins), signal transduction [mitogen-activated protein kinases signaling, salicylic acid (SA), and jasmonic acid (JA)], and plant defense (transcription factors, flavonoids, and terpenoids). The upregulation of the selected DEGs was verified by real-time quantitative PCR data analysis, performed on the resistant and susceptible genotypes. A phytohormone bioassay experiment showed a decrease in aphid population, plant mortality, and damage in the susceptible genotype when treated with JA and SA. Together, the results indicate that the set of genes, pathways, and defense compounds is involved in host plant resistance to aphids. These findings shed light on the specific role of each DEG, thus advancing our understanding of the genetic and molecular mechanisms of host plant resistance to aphids.

2.
New Phytol ; 240(2): 846-862, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37533135

RESUMO

Abscission is predetermined in specialized cell layers called the abscission zone (AZ) and activated by developmental or environmental signals. In the grass family, most identified AZ genes regulate AZ anatomy, which differs among lineages. A YABBY transcription factor, SHATTERING1 (SH1), is a domestication gene regulating abscission in multiple cereals, including rice and Setaria. In rice, SH1 inhibits lignification specifically in the AZ. However, the AZ of Setaria is nonlignified throughout, raising the question of how SH1 functions in species without lignification. Crispr-Cas9 knockout mutants of SH1 were generated in Setaria viridis and characterized with histology, cell wall and auxin immunofluorescence, transmission electron microscopy, hormonal treatment and RNA-Seq analysis. The sh1 mutant lacks shattering, as expected. No differences in cell anatomy or cell wall components including lignin were observed between sh1 and the wild-type (WT) until abscission occurs. Chloroplasts degenerated in the AZ of WT before abscission, but degeneration was suppressed by auxin treatment. Auxin distribution and expression of auxin-related genes differed between WT and sh1, with the signal of an antibody to auxin detected in the sh1 chloroplast. SH1 in Setaria is required for activation of abscission through auxin signaling, which is not reported in other grass species.


Assuntos
Oryza , Setaria (Planta) , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Ácidos Indolacéticos/metabolismo , Fatores de Transcrição/metabolismo , Oryza/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Front Plant Sci ; 14: 1059574, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844091

RESUMO

The C4 grass pearl millet is one of the most drought tolerant cereals and is primarily grown in marginal areas where annual rainfall is low and intermittent. It was domesticated in sub-Saharan Africa, and several studies have found that it uses a combination of morphological and physiological traits to successfully resist drought. This review explores the short term and long-term responses of pearl millet that enables it to either tolerate, avoid, escape, or recover from drought stress. The response to short term drought reveals fine tuning of osmotic adjustment, stomatal conductance, and ROS scavenging ability, along with ABA and ethylene transduction. Equally important are longer term developmental plasticity in tillering, root development, leaf adaptations and flowering time that can both help avoid the worst water stress and recover some of the yield losses via asynchronous tiller production. We examine genes related to drought resistance that were identified through individual transcriptomic studies and through our combined analysis of previous studies. From the combined analysis, we found 94 genes that were differentially expressed in both vegetative and reproductive stages under drought stress. Among them is a tight cluster of genes that are directly related to biotic and abiotic stress, as well as carbon metabolism, and hormonal pathways. We suggest that knowledge of gene expression patterns in tiller buds, inflorescences and rooting tips will be important for understanding the growth responses of pearl millet and the trade-offs at play in the response of this crop to drought. Much remains to be learnt about how pearl millet's unique combination of genetic and physiological mechanisms allow it to achieve such high drought tolerance, and the answers to be found may well be useful for crops other than just pearl millet.

4.
Plant Physiol ; 192(1): 222-239, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36756804

RESUMO

Abscission, known as shattering in crop species, is a highly regulated process by which plants shed parts. Although shattering has been studied extensively in cereals and a number of regulatory genes have been identified, much diversity in the process remains to be discovered. Teff (Eragrostis tef) is a crop native to Ethiopia that is potentially highly valuable worldwide for its nutritious grain and drought tolerance. Previous work has suggested that grain shattering in Eragrostis might have little in common with other cereals. In this study, we characterize the anatomy, cellular structure, and gene regulatory control of the abscission zone (AZ) in E. tef. We show that the AZ of E. tef is a narrow stalk below the caryopsis, which is common in Eragrostis species. X-ray microscopy, scanning electron microscopy, transmission electron microscopy, and immunolocalization of cell wall components showed that the AZ cells are thin walled and break open along with programmed cell death (PCD) at seed maturity, rather than separating between cells as in other studied species. Knockout of YABBY2/SHATTERING1, documented to control abscission in several cereals, had no effect on abscission or AZ structure in E. tef. RNA sequencing analysis showed that genes related to PCD and cell wall modification are enriched in the AZ at the early seed maturity stage. These data show that E. tef drops its seeds using a unique mechanism. Our results provide the groundwork for understanding grain shattering in Eragrostis and further improvement of shattering in E. tef.


Assuntos
Morte Celular , Eragrostis , Grão Comestível/genética , Eragrostis/genética , Sementes/genética
5.
Front Plant Sci ; 13: 1023581, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388483

RESUMO

Shoot branches develop from buds in leaf axils. Once formed from axillary meristems, the buds enter a transition stage before growing into branches. The buds may transition into dormancy if internal and environmental factors limit sucrose supply to the buds. A fundamental question is why sucrose can be limiting at the transition stage for bud outgrowth, whereas new buds continue to be formed. Sucrose is transported to sink tissues through symplastic or apoplastic pathways and a shift from symplastic to apoplastic pathway is common during seed and fruit development. In addition, symplastic connected tissues are stronger sinks than symplastically isolated tissues that rely on sugars effluxed to the apoplast. Recent studies in sorghum, sugarcane, and maize indicate activation of apoplastic sugar in buds that transition to outgrowth but not to dormancy, although the mode of sugar transport during bud formation is still unclear. Since the apoplastic pathway in sorghum buds was specifically activated during bud outgrowth, we posit that sugar for axillary bud formation is most likely supplied through the symplastic pathway. This suggests a key developmental change at the transition stage, which alters the sugar transport pathway of newly-formed buds from symplastic to apoplastic, making the buds a less strong sink for sugars. We suggest therefore that bud outgrowth that relies on overflow of excess sucrose to the apoplast will be more sensitive to internal and environmental factors that enhance the growth of sink tissues and sucrose demand in the parent shoot; whereas bud formation that relies on symplastic sucrose will be less affected by these factors.

6.
Plant Physiol ; 189(2): 715-734, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35285930

RESUMO

Directional transport of auxin is critical for inflorescence and floral development in flowering plants, but the role of auxin influx carriers (AUX1 proteins) has been largely overlooked. Taking advantage of available AUX1 mutants in green millet (Setaria viridis) and maize (Zea mays), we uncover previously unreported aspects of plant development that are affected by auxin influx, including higher order branches in the inflorescence, stigma branch number, glume (floral bract) development, and plant fertility. However, disruption of auxin flux does not affect all parts of the plant, with little obvious effect on inflorescence meristem size, time to flowering, and anther morphology. In double mutant studies in maize, disruptions of ZmAUX1 also affect vegetative development. A green fluorescent protein (GFP)-tagged construct of the Setaria AUX1 protein Sparse Panicle1 (SPP1) under its native promoter showed that SPP1 localizes to the plasma membrane of outer tissue layers in both roots and inflorescences, and accumulates specifically in inflorescence branch meristems, consistent with the mutant phenotype and expected auxin maxima. RNA-seq analysis indicated that most gene expression modules are conserved between mutant and wild-type plants, with only a few hundred genes differentially expressed in spp1 inflorescences. Using clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology, we disrupted SPP1 and the other four AUX1 homologs in S. viridis. SPP1 has a larger effect on inflorescence development than the others, although all contribute to plant height, tiller formation, and leaf and root development. The AUX1 importers are thus not fully redundant in S. viridis. Our detailed phenotypic characterization plus a stable GFP-tagged line offer tools for future dissection of the function of auxin influx proteins.


Assuntos
Setaria (Planta) , Zea mays , Ácidos Indolacéticos/metabolismo , Inflorescência , Meristema/metabolismo , Mutação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Setaria (Planta)/genética , Zea mays/metabolismo
7.
Front Plant Sci ; 13: 1079146, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714715

RESUMO

Paysonia auriculata (Brassicaceae) produces multiple hydroxy fatty acids as major components of the seed oil. We tracked the changes in seed oil composition and gene expression during development, starting 14 days after flowers had been pollinated. Seed oil changes showed initially higher levels of saturated and unsaturated fatty acids (FAs) but little accumulation of hydroxy fatty acids (HFAs). Starting 21 days after pollination (DAP) HFA content sharply increased, and reached almost 30% at 28 DAP. Total seed oil also increased from a low of approximately 2% at 14 DAP to a high of approximately 20% by 42 DAP. We identified almost all of the fatty acid synthesis and modification genes that are known from Arabidopsis, and, in addition, a strong candidate for the hydroxylase gene that mediates the hydroxylation of fatty acids to produce valuable hydroxy fatty acids (HFAs) in this species. The gene expression network revealed is very similar to that of the emerging oil crop, Physaria fendleri, in the sister genus to Paysonia. Phylogenetic analyses indicate the hydroxylase enzyme, FAH12, evolved only once in Paysonia and Physaria, and that the enzyme is closely related to FAD2 enzymes. Phylogenetic analyses of FAD2 and FAH12 in the Brassicaceae and outgroup genera suggest that the branch leading to the hydroxylase clade of Paysonia and Physaria is under relaxed selection, compared with the strong purifying selection found across the FAD2 lineages.

8.
G3 (Bethesda) ; 11(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33712819

RESUMO

Phenotypes such as branching, photoperiod sensitivity, and height were modified during plant domestication and crop improvement. Here, we perform quantitative trait locus (QTL) mapping of these and other agronomic traits in a recombinant inbred line (RIL) population derived from an interspecific cross between Sorghum propinquum and Sorghum bicolor inbred Tx7000. Using low-coverage Illumina sequencing and a bin-mapping approach, we generated ∼1920 bin markers spanning ∼875 cM. Phenotyping data were collected and analyzed from two field locations and one greenhouse experiment for six agronomic traits, thereby identifying a total of 30 QTL. Many of these QTL were penetrant across environments and co-mapped with major QTL identified in other studies. Other QTL uncovered new genomic regions associated with these traits, and some of these were environment-specific in their action. To further dissect the genetic underpinnings of tillering, we complemented QTL analysis with transcriptomics, identifying 6189 genes that were differentially expressed during tiller bud elongation. We identified genes such as Dormancy Associated Protein 1 (DRM1) in addition to various transcription factors that are differentially expressed in comparisons of dormant to elongating tiller buds and lie within tillering QTL, suggesting that these genes are key regulators of tiller elongation in sorghum. Our study demonstrates the usefulness of this RIL population in detecting domestication and improvement-associated genes in sorghum, thus providing a valuable resource for genetic investigation and improvement to the sorghum community.


Assuntos
Sorghum , Mapeamento Cromossômico , Grão Comestível/genética , Perfilação da Expressão Gênica , Fenótipo , Locos de Características Quantitativas , Sorghum/genética
9.
New Phytol ; 225(4): 1799-1815, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31372996

RESUMO

Abscission is a process in which plants shed their parts, and is mediated by a particular set of cells, the abscission zone (AZ). In grasses (Poaceae), the position of the AZ differs among species, raising the question of whether its anatomical structure and genetic control are conserved. The ancestral position of the AZ was reconstructed. A combination of light microscopy, transmission electron microscopy, RNA-Seq analyses and RNA in situ hybridisation were used to compare three species, two (weedy rice and Brachypodium distachyon) with the AZ in the ancestral position and one (Setaria viridis) with the AZ in a derived position below a cluster of flowers (spikelet). Rice and Brachypodium are more similar anatomically than Setaria. However, the cell wall properties and the transcriptome of rice and Brachypodium are no more similar to each other than either is to Setaria. The set of genes expressed in the studied tissues is generally conserved across species, but the precise developmental and positional patterns of expression and gene networks are almost entirely different. Transcriptional regulation of AZ development appears to be extensively rewired among the three species, leading to distinct anatomical and morphological outcomes.


Assuntos
Brachypodium/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Redes Reguladoras de Genes , Oryza/metabolismo , Setaria (Planta)/metabolismo , Brachypodium/genética , Oryza/genética , Filogenia , Caules de Planta/fisiologia , Setaria (Planta)/genética
11.
Front Plant Sci ; 9: 719, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29896214

RESUMO

Setaria viridis (green foxtail) and its domesticated relative S. italica (foxtail millet) are diploid C4 panicoid grasses that are being developed as model systems for studying grass genomics, genetics, development, and evolution. According to archeological evidence, foxtail millet was domesticated from green foxtail approximately 9,000 to 6,000 YBP in China. Under long-term human selection, domesticated foxtail millet developed many traits adapted to human cultivation and agricultural production. In comparison with its wild ancestor, foxtail millet has fewer vegetative branches, reduced grain shattering, delayed flowering time and less photoperiod sensitivity. Foxtail millet is the only present-day crop in the genus Setaria, although archeological records suggest that other species were domesticated and later abandoned in the last 10,000 years. We present an overview of domestication in foxtail millet, by reviewing recent studies on the genetic regulation of several domesticated traits in foxtail millet and discuss how the foxtail millet and green foxtail system could be further developed to both better understand its domestication history, and to provide more tools for future breeding efforts.

12.
PeerJ ; 5: e4088, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29209576

RESUMO

Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here we present the details and rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.

13.
Front Plant Sci ; 8: 1062, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28729868

RESUMO

The effect of photoperiod (day:night ratio) on flowering time was investigated in the wild species, Setaria viridis, and in a set of recombinant inbred lines (RILs) derived from a cross between foxtail millet (S. italica) and its wild ancestor green foxtail (S. viridis). Photoperiods totaled 24 h, with three trials of 8:16, 12:12 and 16:8 light:dark hour regimes for the RIL population, and these plus 10:14 and 14:10 for the experiments with S. viridis alone. The response of S. viridis to light intensity as well as photoperiod was assessed by duplicating photoperiods at two light intensities (300 and 600 µmol.m-2.s-1). In general, day lengths longer than 12 h delayed flowering time, although flowering time was also delayed in shorter day-lengths relative to the 12 h trial, even when daily flux in high intensity conditions exceeded that of the low intensity 12 h trial. Cluster analysis showed that the effect of photoperiod on flowering time differed between sets of RILs, with some being almost photoperiod insensitive and others being delayed with respect to the population as a whole in either short (8 or 12 h light) or long (16 h light) photoperiods. QTL results reveal a similar picture, with several major QTL colocalizing between the 8 and 12 h light trials, but with a partially different set of QTL identified in the 16 h trial. Major candidate genes for these QTL include several members of the PEBP protein family that includes Flowering Locus T (FT) homologs such as OsHd3a, OsRFT1, and ZCN8/12. Thus, Setaria is a short day plant (flowering quickest in short day conditions) whose flowering is delayed by long day lengths in a manner consistent with the responses of most other members of the grass family. However, the QTL results suggest that flowering time under long day conditions uses additional genetic pathways to those used under short day conditions.

15.
PLoS One ; 11(3): e0151346, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26985990

RESUMO

The architecture of a plant affects its ability to compete for light and to respond to environmental stresses, thus affecting overall fitness and productivity. Two components of architecture, branching and height, were studied in 182 F7 recombinant inbred lines (RILs) at the vegetative, flowering and mature developmental stages in the panicoid C4 model grass system, Setaria. The RIL population was derived from a cross between domesticated S. italica (foxtail millet) and its wild relative S. viridis (green foxtail). In both field and greenhouse trials the wild parent was taller initially, started branching earlier, and flowered earlier, while the domesticated parent was shorter initially, but flowered later, producing a robust tall plant architecture with more nodes and leaves on the main culm and few or no branches. Biomass was highly correlated with height of the plant and number of nodes on the main culm, and generally showed a negative relationship with branch number. However, several of the RILs with the highest biomass in both trials were significantly more branched than the domesticated parent of the cross. Quantitative trait loci (QTL) analyses indicate that both height and branching are controlled by multiple genetic regions, often with QTL for both traits colocalizing in the same genomic regions. Genomic positions of several QTL colocalize with QTL in syntenic regions in other species and contain genes known to control branching and height in sorghum, maize, and switchgrass. Included in these is the ortholog of the rice SD-1 semi-dwarfing gene, which underlies one of the major Setaria height QTL. Understanding the relationships between height and branching patterns in Setaria, and their genetic control, is an important step to gaining a comprehensive knowledge of the development and genetic regulation of panicoid grass architecture.


Assuntos
Biomassa , Desenvolvimento Vegetal/genética , Setaria (Planta)/genética , Cromossomos de Plantas , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Genótipo , Fenótipo , Plantas Geneticamente Modificadas , Locos de Características Quantitativas , Setaria (Planta)/anatomia & histologia
16.
Am J Bot ; 101(10): 1759-69, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25326618

RESUMO

UNLABELLED: • PREMISE OF THE STUDY: Variation in how seeds are dispersed in grasses is ecologically important, and selection for dispersal mechanisms has produced a great variety of dispersal structures (diaspores). Abscission ("shattering") is necessary in wild grasses, but its elimination by selection on nonshattering mutants was a key component of the domestication syndrome in cereal grasses. A key question is whether a common genetic pathway controls abscission in wild grasses, and, if so, what genes in that pathway may have been selected upon during domestication. We summarize morphological and genetic information on abscission zones and disarticulation patterns in grasses and identify hypotheses to test the likelihood of a common genetic pathway.• METHODS: Morphological data on abscission zones for over 10000 species of grasses were tabulated and analyzed using a tribal phylogeny of the grasses. The genomic location of quantitative trait loci (QTLs) and orthologs of genes controlling shattering were compared across species to ascertain whether the same loci might control shattering in different grass lineages.• RESULTS AND CONCLUSIONS: The simple trait of nonshattering is derived from a great diversity of shattering phenotypes. Several sets of QTLs from multiple species are syntenic yet many are not. Genes known to be involved in shattering in several species were found to have orthologs that sometimes colocalized with QTLs in different species, adding support to the hypothesis of retention of a common genetic pathway. These results are used to suggest a research plan that could test the common genetic pathway model more thoroughly.


Assuntos
Evolução Biológica , Grão Comestível/genética , Genes de Plantas , Inflorescência/anatomia & histologia , Filogenia , Poaceae/genética , Locos de Características Quantitativas , Grão Comestível/anatomia & histologia , Genoma de Planta , Inflorescência/fisiologia , Fenótipo , Poaceae/anatomia & histologia , Dispersão de Sementes/genética , Seleção Genética
17.
Proc Natl Acad Sci U S A ; 111(17): 6178-83, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24753598

RESUMO

Domestication is a multifaceted evolutionary process, involving changes in individual genes, genetic interactions, and emergent phenotypes. There has been extensive discussion of the phenotypic characteristics of plant domestication, and recent research has started to identify the specific genes and mutational mechanisms that control domestication traits. However, there is an apparent disconnect between the simple genetic architecture described for many crop domestication traits, which should facilitate rapid phenotypic change under selection, and the slow rate of change reported from the archeobotanical record. A possible explanation involves the middle ground between individual genetic changes and their expression during development, where gene-by-gene (epistatic) and gene-by-environment interactions can modify the expression of phenotypes and opportunities for selection. These aspects of genetic architecture have the potential to significantly slow the speed of phenotypic evolution during crop domestication and improvement. Here we examine whether epistatic and gene-by-environment interactions have shaped how domestication traits have evolved. We review available evidence from the literature, and we analyze two domestication-related traits, shattering and flowering time, in a mapping population derived from a cross between domesticated foxtail millet and its wild progenitor. We find that compared with wild progenitor alleles, those favored during domestication often have large phenotypic effects and are relatively insensitive to genetic background and environmental effects. Consistent selection should thus be able to rapidly change traits during domestication. We conclude that if phenotypic evolution was slow during crop domestication, this is more likely due to cultural or historical factors than epistatic or environmental constraints.


Assuntos
Produtos Agrícolas/genética , Epistasia Genética , Interação Gene-Ambiente , Genes de Plantas/genética , Flores/genética , Flores/fisiologia , Loci Gênicos/genética , Fenótipo , Característica Quantitativa Herdável
18.
Proc Natl Acad Sci U S A ; 111(17): 6139-46, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24757054

RESUMO

It is difficult to overstate the cultural and biological impacts that the domestication of plants and animals has had on our species. Fundamental questions regarding where, when, and how many times domestication took place have been of primary interest within a wide range of academic disciplines. Within the last two decades, the advent of new archaeological and genetic techniques has revolutionized our understanding of the pattern and process of domestication and agricultural origins that led to our modern way of life. In the spring of 2011, 25 scholars with a central interest in domestication representing the fields of genetics, archaeobotany, zooarchaeology, geoarchaeology, and archaeology met at the National Evolutionary Synthesis Center to discuss recent domestication research progress and identify challenges for the future. In this introduction to the resulting Special Feature, we present the state of the art in the field by discussing what is known about the spatial and temporal patterns of domestication, and controversies surrounding the speed, intentionality, and evolutionary aspects of the domestication process. We then highlight three key challenges for future research. We conclude by arguing that although recent progress has been impressive, the next decade will yield even more substantial insights not only into how domestication took place, but also when and where it did, and where and why it did not.


Assuntos
Animais Domésticos/genética , Produtos Agrícolas/genética , Animais , Evolução Biológica , Meio Ambiente , Geografia , Análise Espaço-Temporal
19.
Front Plant Sci ; 4: 250, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23898335

RESUMO

The shoot apical meristem of grasses produces the primary branches of the inflorescence, controlling inflorescence architecture and hence seed production. Whereas leaves are produced in a distichous pattern, with the primordia separated from each other by an angle of 180°, inflorescence branches are produced in a spiral in most species. The morphology and developmental genetics of the shift in phyllotaxis have been studied extensively in maize and rice. However, in wheat, Brachypodium, and oats, all in the grass subfamily Pooideae, the change in phyllotaxis does not occur; primary inflorescence branches are produced distichously. It is unknown whether the distichous inflorescence originated at the base of Pooideae, or whether it appeared several times independently. In this study, we show that Brachyelytrum, the genus sister to all other Pooideae has spiral phyllotaxis in the inflorescence, but that in the remaining 3000+ species of Pooideae, the phyllotaxis is two-ranked. These two-ranked inflorescences are not perfectly symmetrical, and have a clear "front" and "back;" this developmental axis has never been described in the literature and it is unclear what establishes its polarity. Strictly distichous inflorescences appear somewhat later in the evolution of the subfamily. Two-ranked inflorescences also appear in a few grass outgroups and sporadically elsewhere in the family, but unlike in Pooideae do not generally correlate with a major radiation of species. After production of branches, the inflorescence meristem may be converted to a spikelet meristem or may simply abort; this developmental decision appears to be independent of the branching pattern.

20.
Dev Cell ; 25(2): 114-5, 2013 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-23639439

RESUMO

A crucial step in cereal grass domestication is acquisition of seed retention in the inflorescence/seed head for efficient harvesting. Reporting in Nature Genetics, Ishii and colleagues (2013) show that a change in inflorescence architecture is sufficient to increase seed retention, providing an alternative pathway toward cereal grass domestication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA