Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Light Sci Appl ; 12(1): 71, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914618

RESUMO

Laser-driven ion sources are a rapidly developing technology producing high energy, high peak current beams. Their suitability for applications, such as compact medical accelerators, motivates development of robust acceleration schemes using widely available repetitive ultraintense femtosecond lasers. These applications not only require high beam energy, but also place demanding requirements on the source stability and controllability. This can be seriously affected by the laser temporal contrast, precluding the replication of ion acceleration performance on independent laser systems with otherwise similar parameters. Here, we present the experimental generation of >60 MeV protons and >30 MeV u-1 carbon ions from sub-micrometre thickness Formvar foils irradiated with laser intensities >1021 Wcm2. Ions are accelerated by an extreme localised space charge field ≳30 TVm-1, over a million times higher than used in conventional accelerators. The field is formed by a rapid expulsion of electrons from the target bulk due to relativistically induced transparency, in which relativistic corrections to the refractive index enables laser transmission through normally opaque plasma. We replicate the mechanism on two different laser facilities and show that the optimum target thickness decreases with improved laser contrast due to reduced pre-expansion. Our demonstration that energetic ions can be accelerated by this mechanism at different contrast levels relaxes laser requirements and indicates interaction parameters for realising application-specific beam delivery.

2.
Rev Sci Instrum ; 92(3): 033306, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820038

RESUMO

This paper reports on the absolute response of a Fuji BAS-TR image plate to relatively low-energy protons (<0.2 MeV) and carbon ions (<1 MeV) accelerated by a 10-TW-class compact high-intensity laser system. A Thomson parabola spectrometer was used to discriminate between different ion species while dispersing the ions according to their kinetic energy. Ion parabolic traces were recorded using an image plate detector overlaid with a slotted CR-39 solid-state detector. The obtained response function for the protons was reasonably extrapolated from previously reported higher-ion-energy response functions. Conversely, the obtained response function for carbon ions was one order of magnitude higher than the value extrapolated from previously reported higher-ion-energy response functions. In a previous study, it was determined that if the stopping range of carbon ions is comparable to or smaller than the grain size of the phosphor, then some ions will provide all their energy to the binder resin rather than the phosphor. As a result, it is believed that the imaging plate response will be reduced. Our results show good agreement with the empirical formula of Lelasseux et al., which does not consider photo-stimulated luminescence (PSL) reduction due to the urethane resin. It was shown that the PSL reduction due to the deactivation of the urethane resin is smaller than that previously predicted.

3.
Rev Sci Instrum ; 91(7): 075116, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752849

RESUMO

Retrieving the spectrum of physical radiation from experimental measurements typically involves using a mathematical algorithm to deconvolve the instrument response function from the measured signal. However, in the field of signal processing known as "Source Separation" (SS), which refers to the process of computationally retrieving the separate source components that generate an overlapping signal on the detector, the deconvolution process can become an ill-posed problem and crosstalk complicates the separation of the individual sources. To overcome this problem, we have designed a magnetic spectrometer for inline electron energy spectrum diagnosis and developed an analysis algorithm using techniques applicable to the problem of SS. An unknown polychromatic electron spectrum is calculated by sparse coding using a Gaussian basis function and an L1 regularization algorithm with a sparsity constraint. This technique is verified by using a specially designed magnetic field electron spectrometer. We use Monte Carlo simulations of the detector response to Maxwellian input energy distributions with electron temperatures of 5.0 MeV, 10.0 MeV, and 15.0 MeV to show that the calculated sparse spectrum can reproduce the input spectrum with an optimum energy bin width automatically selected by the L1 regularization. The spectra are reproduced with a high accuracy of less than 4.0% error, without an initial value. The technique is then applied to experimental measurements of intense laser accelerated electron beams from solid targets. Our analysis concept of spectral retrieval and automatic optimization of energy bin width by sparse coding could form the basis of a novel diagnostic method for spectroscopy.

4.
Opt Lett ; 43(11): 2595-2598, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29856438

RESUMO

We report the generation of 63 J of broadband pulse energies at 0.1 Hz from the J-KAREN-P laser, which is based on an OPCPA/Ti:sapphire hybrid architecture. Pulse compression down to 30 fs indicates a peak power of over 1 PW. High temporal contrast of 1012 prior to the main pulse has been demonstrated with 10 J output energy. High intensities of 1022 W/cm2 on target by focusing a 0.3 PW laser with an f/1.3 off-axis parabolic mirror have been achieved. Fundamental processes of laser matter interaction at over 1022 W/cm2 intensities belong to a new branch of science that will be the principal research task of our infrastructure.

5.
Opt Express ; 25(17): 20486-20501, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-29041729

RESUMO

J-KAREN-P is a high-power laser facility aiming at the highest beam quality and irradiance for performing state-of-the art experiments at the frontier of modern science. Here we approached the physical limits of the beam quality: diffraction limit of the focal spot and bandwidth limit of the pulse shape, removing the chromatic aberration, angular chirp, wavefront and spectral phase distortions. We performed accurate measurements of the spot and peak fluence after an f/1.3 off-axis parabolic mirror under the full amplification at the power of 0.3 PW attenuated with ten high-quality wedges, resulting in the irradiance of ~1022 W/cm2 and the Strehl ratio of ~0.5.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA