Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(60): 90530-90548, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35870067

RESUMO

Recent progress has been made in the application of novel zirconium-loaded amine-grafted walnut shells as multifunctional adsorbents for the remediation of Alizarin red (AR) and bacteria in aqueous solutions. The morphology and functional groups of ACWNS@Zr were studied using Brunauer-Emmett-Teller (BET) techniques, X-ray diffraction (XRD), pH point of zero charges (pHpzc), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. Adsorption and regeneration tests were carried out in batch and column mode. The ACWNS@Zr had a Langmuir maximum capacity of 415.5 ± 6.1 mg g-1 at 303 K. The spread plate technique was used to evaluate the adsorbent's antimicrobial properties against Staphylococcus aureus and Escherichia coli. ACWNS@Zr exhibited inhibitory potential towards S. aureus and E. coli in the suspensions by 53.3% and 15.0%, respectively. Electrostatic interaction and complexation interaction could be the key mechanisms governing AR dye removal. Equilibrium isotherms fit Langmuir models better for both batch and column studies, while adsorption kinetics to pseudo-second-order and Thomas models for batch and column studies, respectively. Thermodynamic studies indicated that the adsorption process was endothermic and spontaneous. Furthermore, columns' mass transfer capacity (B) increased as the concentration increased due to the enhanced driving force for AR adsorption onto ACWNS@Zr. Regeneration with NaOH solution of AR-loaded ACWNS@Zr was remarkable.


Assuntos
Aminas , Zircônio , Água , Staphylococcus aureus , Escherichia coli
2.
Environ Sci Pollut Res Int ; 29(42): 64177-64191, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35471759

RESUMO

We engineered a tiger nut residue (TNR, a low-cost agricultural waste material) through a facile and simple process to take advantage of the introduced functional groups (cetylpyridinium chloride, CPC) in the removal of 2,4-dichlorophenoxyacetic acid (2,4-D) in batch mode and further investigated its impingement on bacterial growth in a yeast-dextrose broth. The surface characterizations of the adsorbent were achieved through Fourier-transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller method (BET), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS). The batch adsorption studies revealed that solution pH, adsorbent dose, temperature, and salt affected the adsorptive capacity of TNR-CPC. The equilibrium data were best fitted by Langmuir isotherm model with a maximum monolayer adsorption capacity of 90.2 mg g-1 at 318 K and pH 3. Pseudo-second-order model best fitted the kinetics data for the adsorption process. Physisorption largely mediated the adsorption system with spontaneity and a shift in entropy of the aqueous solid-solute interface reflecting decreased randomness with an exothermic character. TNR-CPC demonstrated a good reusability potential making it highly economical and compares well with other adsorbents for decontamination of 2,4-D. The adsorption of 2,4-D proceeded through a probable trio-mechanism; electrostatic attraction between the carboxylate anion of 2,4-D and the pyridinium cation of TNR-CPC, hydrogen bonding between the hydroxyl (-OH) group inherent in the TNR and the carboxyl groups in 2,4-D and a triggered π-π stacking between the benzene structures in the adsorbate and the adsorbent. TNR-CPC reported about 99% inhibition rate against both gram-positive S. aureus and gram-negative E. coli. It would be appropriate to investigate the potential of TNR-CPC as a potential replacement to the metal oxides used in wastewater treatment for antibacterial capabilities, and its effects against airborne bacteria could also be of interest.


Assuntos
Cetilpiridínio , Poluentes Químicos da Água , Ácido 2,4-Diclorofenoxiacético , Adsorção , Antibacterianos/farmacologia , Benzeno , Cetilpiridínio/química , Escherichia coli , Glucose , Concentração de Íons de Hidrogênio , Cinética , Óxidos , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus , Termodinâmica , Poluentes Químicos da Água/química
3.
Chemosphere ; 287(Pt 1): 132030, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34461338

RESUMO

A biocomposite (PN-Fe3O4-PEI) was synthesized via the chemical modification of peanut husk (a low-cost adsorbent) with Fe3O4 particles and polyethyleneimine under benign environmental conditions. The modification agents used in this study were observed to overcome the challenges associated with the use pristine peanut husk with a concomitant enhancement in its efficiency as an adsorbent. Results from the characterization studies employed in this study confirmed PN-Fe3O4-PEI to be a crystalline magnetic adsorbent with a mesoporous structure. The adsorption property of the developed material (PN-Fe3O4-PEI) for wastewater treatment was investigated using Chromium (VI), Phosphates (PO43-) and Congo red (CR) as model pollutants. Using the batch method, PN-Fe3O4-PEI exhibited a maximum monolayer adsorption capacity of 58.4, 13.5 and 71.3 mg g-1 for Cr(VI), PO43- (as P g L-1) and CR, respectively and was dependent on temperature and initial adsorbate concentration. Kinetic studies revealed that the Elovich equation, the pseudo-second order kinetic model and double constant equation well described the uptake of Cr(VI), PO43- and CR onto PN-Fe3O4-PEI, respectively. These results may confirm the uptake of these pollutants to be mainly driven by chemical forces. In addition, PN-Fe3O4-PEI was observed to be efficient for the decontamination of the studied pollutants in real water samples as well as exhibit antibacterial properties towards the growth of S. aureus. These properties of PN-Fe3O4-PEI with its other excellent features such as high stability in solution, good regeneration properties and its facile retrieval from the solution using a magnet promote its suitability for practical wastewater treatment.


Assuntos
Vermelho Congo , Poluentes Químicos da Água , Adsorção , Antibacterianos , Arachis , Cromo , Concentração de Íons de Hidrogênio , Cinética , Fenômenos Magnéticos , Fosfatos , Staphylococcus aureus , Poluentes Químicos da Água/análise
4.
Environ Sci Pollut Res Int ; 29(14): 20976-20995, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34748176

RESUMO

The presence of emerging pollutants such as PO43- and NO3- in water bodies has attracted worldwide concern about their severe effects on water bodies and the health of humankind in general. Therefore, to preserve the health of humankind and environmental safety, it is of the essence that industrial effluents are treated before they are discharged into water bodies. Amine functionalized walnut shells (ACWNS) were synthesized, characterized, and then tested as a novel adsorbent for PO43- and NO3- removal. The effects of pH, dosage, initial phosphate concentration, interference ions, and temperature on the removal of phosphate and nitrate were investigated. Notably, the adsorption of PO43- and NO3- was exothermic and spontaneous, with a maximum uptake capacity of phosphate and nitrate, at 293 K, 82.2 and 35.7 mg g-1, respectively. The mechanism by which these ions were adsorbed onto ACWNS could be electrostatic interactions and hydrogen bonding. Pseudo-second-order kinetic model fitted the PO43- and NO3- adsorption, while Freundlich and Langmuir models best fitted the PO43- and NO3- adsorption, respectively. Furthermore, in the binary system, the uptake capacity of phosphate decreased by 14.4% while nitrate witnessed a reduction in its uptake capacity of 10.4%. ACWNS has a higher attraction towards both ions and this could be attributed to the existence of a variety of active areas on ACWNS that exhibit a degree of specificity for the individual ions. Results obtained from real water sample analysis confirmed ACWNS as highly efficient to be utilized for practical remediation processes.


Assuntos
Juglans , Poluentes Químicos da Água , Adsorção , Aminas , Concentração de Íons de Hidrogênio , Juglans/química , Cinética , Nitratos/análise , Fosfatos/química , Poluentes Químicos da Água/análise
5.
J Colloid Interface Sci ; 598: 69-82, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33892443

RESUMO

Accessibility to quality and clean water has in recent times been compromised due to the presence of pollutants, thus posing as a threat to the survival of living organisms. The adsorption technique in this regard has been observed to be useful in the remediation process with the material used as the adsorbent playing an integral role. In this study, a novel biocomposite (PN-Fe3O4-IDA-Al) based on peanut husk (a low-cost material) was developed by functionalization with aluminum (Al), iminodiacetic acid (IDA) and Fe3O4. The efficiency of PN-Fe3O4-IDA-Al as an adsorbent for the remediation of wastewater was evaluated using Congo red (CR) and phosphates (PO43-) as model pollutants. The results from the characterization studies confirmed PN-Fe3O4-IDA-Al to have superparamagnetic properties which ensures its easy retrieval. Adsorption studies indicated that PN-Fe3O4-IDA-Al had a maximum monolayer capacity of 79.0 ± 2.0 and 16.8 ± 2.5 mg g-1 for CR and PO43- (according to P), respectively, which was significantly dependent on factors such as reaction time, solution pH, temperature and the presence of some common anions. The Freundlich model was observed to better describe both adsorption processes with chemisorption being the principal underlying mechanism. Results from using real water samples confirmed PN-Fe3O4-IDA-Al to be highly efficient for practical remediation processes. These results coupled with the synthesis of PN-Fe3O4-IDA-Al under benign conditions using low-cost materials help to expound the knowledge on the use of low cost materials as the basis for the development of highly efficient adsorbents for wastewater remediation.


Assuntos
Vermelho Congo , Poluentes Químicos da Água , Adsorção , Arachis , Concentração de Íons de Hidrogênio , Cinética , Fenômenos Magnéticos , Fosfatos , Poluentes Químicos da Água/análise
6.
Environ Sci Pollut Res Int ; 28(28): 37322-37337, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33715124

RESUMO

A novel adsorbent (PN-Fe3O4-IDA-Zr) was developed from the chemical modification of peanut husk (a low cost material) with Fe3O4, iminodiacetic acid (IDA) and zirconium (Zr) and its efficacy for the sequestration of wastewater assessed using Alizarin red (AR) and Acid chrome blue K (AK) as model pollutants. To elucidate the characteristics of the formed adsorbent, analytical techniques such as the Bruauner-Emmet-Teller (BET) method, X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared (FTIR) spectroscopy, X-ray diffractive spectroscopy (XRD) and vibrating sample magnetometer (VSM) were applied. Results from these studies confirmed the formation of a crystalline mesoporous adsorbent with surface properties which enhanced its usefulness. From the adsorption studies, it was observed that factors such as pH, salts, temperature and contact time influenced the uptake of the anionic dyes. The maximum monolayer capacity of PN-Fe3O4-IDA-Zr for AR was 49.4 mg g-1 (at 313 K) and was well fitted by the Langmuir model with the chemisorption process being the dominant reaction mechanism. In binary systems, PN-Fe3O4-IDA-Zr exhibited higher affinity for AR as compared with AK. The significant removal efficiency exhibited by this novel adsorbent as well as other unique features such as easy retrieval and high regeneration promotes its prospects as an adsorbent for practical wastewater remediation processes.


Assuntos
Corantes , Poluentes Químicos da Água , Adsorção , Arachis , Concentração de Íons de Hidrogênio , Iminoácidos , Cinética , Fenômenos Magnéticos , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise , Zircônio
7.
Environ Sci Pollut Res Int ; 28(22): 28732-28749, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33550551

RESUMO

In this research, the eco-friendly cationic surfactant modified walnut shell (WNS-CTAB) was synthesised to enhance the uptake for bisphenol A (BPA) and Congo red (CR) from aqueous solution. The characterisation of WNS-CTAB was performed using Fourier-transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), etc. to know its physiochemical properties. The adsorption equilibrium results were best described by the Langmuir isotherm model, which confirmed the monolayer adsorption of the pollutant molecules onto the adsorbent's surface. The maximum monolayer adsorption quantity of WNS-CTAB was established to be 38.5 mg g-1 for BPA and 104.4 mg g-1 for CR at 303 K, respectively. Pseudo-second-order kinetic models described the adsorption kinetics of both BPA and CR. Furthermore, the intra-particle diffusion was applied to analyse the kinetic results and was established that the rate was not solely controlled by diffusion. The mechanisms associated with BPA and CR adsorption onto the WNS-CTAB may include van der Waals interaction, hydrophobic interaction, and electrostatic force. WNS-CTAB demonstrated a good reusability potential with desorption through three successive adsorption-desorption cycles performed in both experiments. Moreover, in the binary system, the adsorption capacity of BPA witnessed a 66% decrease while CR saw marginal reduction of 8.0 %. This suggests that WNS-CTAB had a higher affinity for binding to CR with higher selectivity as compared with BPA. Therefore, WNS-CTAB has exhibited huge potential to serve as a functional material for practical use in the treatment of wastewater.


Assuntos
Juglans , Poluentes Químicos da Água , Adsorção , Compostos Benzidrílicos , Cetrimônio , Vermelho Congo/análise , Descontaminação , Concentração de Íons de Hidrogênio , Cinética , Fenóis , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise
8.
Environ Pollut ; 268(Pt A): 115729, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33011610

RESUMO

The presence of higher concentrations of heavy metals in water affects its quality with a concomitant adverse effect on its users thus their removal is paramount. A novel adsorbent, PN-Fe3O4-IDA derived from the chemical modification of peanut husk (a low-cost agricultural biomass produced in significant quantities globally) using magnetic nanoparticles (Fe3O4) and iminodiacetic acid was utilized for the remediation of heavy metals in aqueous solution. Analytical techniques vis-à-vis the Fourier-Transform Infrared, Scanning Electron Microscope, Brunauer-Emmett-Teller, X-ray photoelectron spectroscopy and X-ray Diffraction were applied for the characterization of PN-Fe3O4-IDA. Results from the characterization studies showed that PN-Fe3O4-IDA possessed a mesoporous structure, a heterogeneous surface and functional groups such as carboxylic acid and a tertiary nitrogen atom which enhanced its adsorption capacities as well as magnetic properties which ensured its easy removal from the solution using a magnet. The maximum uptake of Pb and Cu onto PN-Fe3O4-IDA was 0.36 and 0.75 mmol g-1 (at 318 K) respectively with the chemisorption process being the major reaction pathway for the processes. The synthesized adsorbent exhibits significant adsorption capacity for the selected pollutants as well as some unique features which promotes its use as an adsorbent for wastewater remediation processes.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Arachis , Concentração de Íons de Hidrogênio , Iminoácidos , Cinética , Chumbo , Água , Poluentes Químicos da Água/análise
9.
Environ Sci Pollut Res Int ; 27(32): 40316-40330, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32666444

RESUMO

A novel adsorbent PN-Fe3O4-IDA was developed by the chemical modification of magnetic peanut husk with iminodiacetic acid (IDA) and its efficacy for the sequestration of cationic dyes assessed using methylene blue (MB) as a model. This modification process enhanced the adsorption capacity of peanut husk as an adsorbent for dye sequestration and at the same time greatly minimized the adverse effects associated with its use in the pristine state. Results from the batch adsorption studies indicated that the uptake of MB onto PN-Fe3O4-IDA increased with MB concentration, contact time, temperature and pH whereas it decreased in the presence of some common salts. The pseudo-second-order kinetic model was observed to best describe the adsorption process which may greatly be influenced by the intra particle diffusion mass transfer. A maximum monolayer adsorption capacity of 43.5 mg g-1 was observed at 313 K according to the Langmuir model. There was good property of regeneration for MB-loaded PN-Fe3O4-IDA. Based on these results, as well as other unique features such as easy separation and preparation under benign environmental conditions, PN-Fe3O4-IDA exhibits great potential for the removal of MB and other cationic pollutants in practical applications with easy separation from solution using external magnet. Graphical abstract.


Assuntos
Azul de Metileno , Poluentes Químicos da Água , Adsorção , Arachis , Concentração de Íons de Hidrogênio , Iminoácidos , Cinética , Fenômenos Magnéticos , Azul de Metileno/análise , Poluentes Químicos da Água/análise
10.
Chemosphere ; 259: 127439, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32593825

RESUMO

The presence of emerging micropollutants and dyes in water resource has raised global concern about their intense effects to aquatic environments, ecosystem and human health in general. So far, various adsorbents have been suggested for reducing the levels of bisphenol A, methylene blue and neutral red contamination in wastewaters. However, a number of these adsorbents seemed to have low adsorptive capacities and regeneration performances. In view of these, batch experiment was performed to decontaminate these pollutants from aqueous solutions using an optimized bagasse-ß-cyclodextrin polymer (SB-ß-CD). Characterization studies of SB-ß-CD were performed using FTIR, pH point of zero charge, XRD and BET methods. Adsorption of BPA, MB and NR was favored at lower temperature (298 K) and pH of 7.0, 9.0 and 6.0, respectively. The maximum adsorption capacity of BPA, MB and NR at 298 K was 121, 963 and 685 mg g-1, respectively. Hydrogen bonding through host-guest inclusion and electrostatic interactions could respectively attribute to uptake of BPA and MB/NR onto SB-ß-CD. Adsorption kinetics of three pollutants followed pseudo-second-order model. Langmuir and Freundlich models were fitted to describe the adsorption of BPA and MB/NR, respectively. Thermodynamic parameters confirmed the occurrence of physical adsorption which is spontaneous and exothermic in nature. SB-ß-CD loaded with BPA and MB/NR was certainly reused by 75% ethanol and 0.1 mol L-1 HCl solutions, respectively. Novel SB-ß-CD showed better adsorptive capacity and regeneration performances; consequently can offers practical application for removal of BPA, MB and NR from wastewaters.


Assuntos
Compostos Benzidrílicos/química , Celulose/química , Ciclodextrinas/química , Azul de Metileno/química , Vermelho Neutro/química , Fenóis/química , Adsorção , Ecossistema , Polímeros , Poluentes Químicos da Água/análise , Purificação da Água/métodos , beta-Ciclodextrinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA