Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
2.
Open Biol ; 13(11): 230158, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37989221

RESUMO

Alpha-synuclein (SNCA) accumulation plays a central role in the pathogenesis of Parkinson's disease. Determining and interfering with the mechanisms that control SNCA expression is one approach to limiting disease progression. Currently, most of our understanding of SNCA regulation is protein-based. Post-transcriptional mechanisms directly regulating SNCA mRNA expression via its 3' untranslated region (3'UTR) were investigated here. Mass spectrometry of proteins pulled down from murine brain lysates using a biotinylated SNCA 3'UTR revealed multiple RNA-binding proteins, of which HNRNPD/AUF1 was chosen for further analysis. AUF1 bound both proximal and distal regions of the SNCA 3'UTR, but not the 5'UTR or CDS. In the nucleus, AUF1 attenuated SNCA pre-mRNA maturation and was indispensable for the export of SNCA transcripts. AUF1 destabilized SNCA transcripts in the cytosol, primarily those with shorter 3'UTRs, independently of microRNAs by recruiting the CNOT1-CNOT7 deadenylase complex to trim the polyA tail. Furthermore, AUF1 inhibited SNCA mRNA binding to ribosomes. These data identify AUF1 as a multi-tasking protein regulating maturation, nucleocytoplasmic shuttling, stability and translation of SNCA transcripts.


Assuntos
Proteínas de Ligação a RNA , Camundongos , Animais , Regiões 3' não Traduzidas , Transporte Ativo do Núcleo Celular , Ribonucleoproteína Nuclear Heterogênea D0/genética , Ribonucleoproteína Nuclear Heterogênea D0/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ligação Proteica
3.
Cell Mol Life Sci ; 79(7): 373, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35727337

RESUMO

Ca2+ is a critical mediator of neurotransmitter release, synaptic plasticity, and gene expression, but also excitotoxicity. Ca2+ signaling and homeostasis are coordinated by an intricate network of channels, pumps, and calcium-binding proteins, which must be rapidly regulated at all expression levels. Τhe role of neuronal miRNAs in regulating ryanodine receptors (RyRs) and inositol 1,4,5-triphosphate receptors (IP3Rs) was investigated to understand the underlying mechanisms that modulate ER Ca2+ release. RyRs and IP3Rs are critical in mounting and propagating cytosolic Ca2+ signals by functionally linking the ER Ca2+ content, while excessive ER Ca2+ release via these receptors is central to the pathophysiology of a wide range of neurological diseases. Herein, two brain-restricted microRNAs, miR-124-3p and miR-153-3p, were found to bind to RyR1-3 and IP3R3 3'UTRs, and suppress their expression at both the mRNA and protein level. Ca2+ imaging studies revealed that overexpression of these miRNAs reduced ER Ca2+ release upon RyR/IP3R activation, but had no effect on [Ca2+]i under resting conditions. Interestingly, treatments that cause excessive ER Ca2+ release decreased expression of these miRNAs and increased expression of their target ER Ca2+ channels, indicating interdependence of miRNAs, RyRs, and IP3Rs in Ca2+ homeostasis. Furthermore, by maintaining the ER Ca2+ content, miR-124 and miR-153 reduced cytosolic Ca2+ overload and preserved protein-folding capacity by attenuating PERK signaling. Overall, this study shows that miR-124-3p and miR-153-3p fine-tune ER Ca2+ homeostasis and alleviate ER stress responses.


Assuntos
MicroRNAs , Canal de Liberação de Cálcio do Receptor de Rianodina , Cálcio/metabolismo , Sinalização do Cálcio , Homeostase , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neurônios/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Resposta a Proteínas não Dobradas/genética
4.
Int J Mol Sci ; 23(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35563580

RESUMO

DNA damage-inducible transcript 4 (DDIT4) is a ubiquitous protein whose expression is transiently increased in response to various stressors. Chronic expression has been linked to various pathologies, including neurodegeneration, inflammation, and cancer. DDIT4 is best recognized for repressing mTORC1, an essential protein complex activated by nutrients and hormones. Accordingly, DDIT4 regulates metabolism, oxidative stress, hypoxic survival, and apoptosis. Despite these well-defined biological functions, little is known about its interacting partners and their unique molecular functions. Here, fusing an enhanced ascorbate peroxidase 2 (APEX2) biotin-labeling enzyme to DDIT4 combined with mass spectrometry, the proteins in the immediate vicinity of DDIT4 in either unstressed or acute stress conditions were identified in situ. The context-dependent interacting proteomes were quantitatively but not functionally distinct. DDIT4 had twice the number of interaction partners during acute stress compared to unstressed conditions, and while the two protein lists had minimal overlap in terms of identity, the proteins' molecular function and classification were essentially identical. Moonlighting keratins and ribosomal proteins dominated the proteomes in both unstressed and stressed conditions, with many of their members having established non-canonical and indispensable roles during stress. Multiple keratins regulate mTORC1 signaling via the recruitment of 14-3-3 proteins, whereas ribosomal proteins control translation, cell cycle progression, DNA repair, and death by sequestering critical proteins. In summary, two potentially distinct mechanisms of DDIT4 molecular function have been identified, paving the way for additional research to confirm and consolidate these findings.


Assuntos
Proteoma , Proteínas Ribossômicas , Ascorbato Peroxidases , Queratinas , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteoma/metabolismo
5.
Biology (Basel) ; 11(2)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35205152

RESUMO

TIA1 is a broadly expressed DNA/RNA binding protein that regulates multiple aspects of RNA metabolism. It is best known for its role in stress granule assembly during the cellular stress response. Three RNA recognition motifs mediate TIA1 functions along with a prion-like domain that supports multivalent protein-protein interactions that are yet poorly characterized. Here, by fusing the enhanced ascorbate peroxidase 2 (APEX2) biotin-labeling enzyme to TIA1 combined with mass spectrometry, the proteins in the immediate vicinity of TIA1 were defined in situ. Eighty-six and 203 protein partners, mostly associated with ribonucleoprotein complexes, were identified in unstressed control and acute stress conditions, respectively. Remarkably, the repertoire of TIA1 protein partners was highly dissimilar between the two cellular states. Under unstressed control conditions, the biological processes associated with the TIA1 interactome were enriched for cytosolic ontologies related to mRNA metabolism, such as translation initiation, nucleocytoplasmic transport, and RNA catabolism, while the protein identities were primarily represented by RNA binding proteins, ribosomal subunits, and eicosanoid regulators. Under acute stress, TIA1-labeled partners displayed a broader subcellular distribution that included the chromosomes and mitochondria. The enriched biological processes included splicing, translation, and protein synthesis regulation, while the molecular function of the proteins was enriched for RNA binding activity, ribosomal subunits, DNA double-strand break repair, and amide metabolism. Altogether, these data highlight the TIA1 spatial environment with its different partners in diverse cellular states and pave the way to dissect TIA1 role in these processes.

6.
NPJ Parkinsons Dis ; 8(1): 7, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013342

RESUMO

Parkinson's disease (PD) is a complex, age-related, neurodegenerative disease whose etiology, pathology, and clinical manifestations remain incompletely understood. As a result, care focuses primarily on symptoms relief. Circular RNAs (circRNAs) are a large class of mostly noncoding RNAs that accumulate with aging in the brain and are increasingly shown to regulate all aspects of neuronal and glial development and function. They are generated by the spliceosome through the backsplicing of linear RNA. Although their biological role remains largely unknown, they have been shown to regulate transcription and splicing, act as decoys for microRNAs and RNA binding proteins, used as templates for translation, and serve as scaffolding platforms for signaling components. Considering that they are stable, diverse, and detectable in easily accessible biofluids, they are deemed promising biomarkers for diagnosing diseases. CircRNAs are differentially expressed in the brain of patients with PD, and growing evidence suggests that they regulate PD pathogenetic processes. Here, the biogenesis, expression, degradation, and detection of circRNAs, as well as their proposed functions, are reviewed. Thereafter, research linking circRNAs to PD-related processes, including aging, alpha-synuclein dysregulation, neuroinflammation, and oxidative stress is highlighted, followed by recent evidence for their use as prognostic and diagnostic biomarkers for PD.

7.
Food Chem Toxicol ; 152: 112187, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33839215

RESUMO

It is well-established that long-term fasting improves metabolic health, enhances the total antioxidant capacity and increases well-being. MicroRNAs oversee energy homeostasis and metabolic processes and are widely used as circulating biomarkers to identify the metabolic state. This study investigated whether the expression levels of twenty-four metabolism-associated microRNAs are significantly altered following long-term fasting and if these changes correlate with biochemical and redox parameters in the plasma. Thirty-two participants with an average BMI of 28 kg/m2 underwent a 10-day fasting period with a daily intake of 250 kcal under medical supervision. RT-qPCR on plasma small-RNA extracts revealed that the levels of seven microRNAs (miR-19b-3p, miR-22-3p, miR-122-5p, miR-126-3p, miR-142-3p, miR-143-3p, and miR-145-5p) were significantly altered following fasting. Importantly, the expression levels of these microRNAs have been consistently shown to change in the exact opposite direction in pathological states including obesity, diabetes, nonalcoholic steatohepatitis, and cardiovascular disease. Linear regression analyses revealed that among the microRNAs analyzed, anti-inflammatory miR-146-5p expression displayed most correlations with the levels of different biochemical and redox parameters. In silico analysis of fasting-associated microRNAs demonstrated that they target pathways that are highly enriched for intracellular signaling such mTOR, FoxO and autophagy, as well as extracellular matrix (ECM) interactions and cell-senescence. Overall, these data are consistent with a model in which long-term fasting engages homeostatic mechanisms associated with specific microRNAs to improve metabolic signaling regardless of health status.


Assuntos
MicroRNA Circulante/metabolismo , Jejum/fisiologia , Adolescente , Adulto , Idoso , MicroRNA Circulante/sangue , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia , Adulto Jovem
8.
Mov Disord ; 36(5): 1170-1179, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33433033

RESUMO

BACKGROUND: New noninvasive and affordable molecular approaches that will complement current practices and increase the accuracy of Parkinson's disease (PD) diagnosis are urgently needed. Circular RNAs (circRNAs) are stable noncoding RNAs that accumulate with aging in neurons and are increasingly shown to regulate all aspects of neuronal development and function. OBJECTIVES: Τhe aims of this study were to identify differentially expressed circRNAs in blood mononuclear cells of patients with idiopathic PD and explore the competing endogenous RNA networks affected. METHODS: Eighty-seven circRNAs were initially selected based on relatively high gene expression in the human brain. More than half of these were readily detectable in blood mononuclear cells using real-time reverse transcription-polymerase chain reaction. Comparative expression analysis was then performed in blood mononuclear cells from 60 control subjects and 60 idiopathic subjects with PD. RESULTS: Six circRNAs were significantly down-regulated in patients with PD. The classifier that best distinguished PD consisted of four circRNAs with an area under the curve of 0.84. Cross-linking immunoprecipitation-sequencing data revealed that the RNA-binding proteins bound by most of the deregulated circRNAs include the neurodegeneration-associated FUS, TDP43, FMR1, and ATXN2. MicroRNAs predicted to be sequestered by most deregulated circRNAs have the Gene Ontology categories "protein modification" and "transcription factor activity" mostly enriched. CONCLUSIONS: This is the first study that identifies specific circRNAs that may serve as diagnostic biomarkers for PD. Because they are highly expressed in the brain and are derived from genes with essential brain functions, they may also hint on the PD pathways affected. © 2021 Biomedical Research Foundation, Academy of Athens. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , RNA Circular , Ontologia Genética , Humanos , Leucócitos Mononucleares , MicroRNAs/genética , Doença de Parkinson/genética
9.
Med Res Rev ; 41(5): 2656-2688, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32656818

RESUMO

Movement disorders are a group of neurological conditions characterized by abnormalities of movement and posture. They are broadly divided into akinetic and hyperkinetic syndromes. Until now, no effective symptomatic or disease-modifying therapies have been available. However, since many of these disorders are monogenic or have some well-defined genetic component, they represent strong candidates for antisense oligonucleotide (ASO) therapies. ASO therapies are based on the use of short synthetic single-stranded ASOs that bind to disease-related target RNAs via Watson-Crick base-pairing and pleiotropically modulate their function. With information arising from the RNA sequence alone, it is possible to design ASOs that not only alter the expression levels but also the splicing defects of any protein, far exceeding the intervention repertoire of traditional small molecule approaches. Following the regulatory approval of ASO therapies for spinal muscular atrophy and Duchenne muscular dystrophy in 2016, there has been tremendous momentum in testing such therapies for other neurological disorders. This review article initially focuses on the chemical modifications aimed at improving ASO effectiveness, the mechanisms by which ASOs can interfere with RNA function, delivery systems and pharmacokinetics, and the common set of toxicities associated with their application. It, then, describes the pathophysiology and the latest information on preclinical and clinical trials utilizing ASOs for the treatment of Parkinson's disease, Huntington's disease, and ataxias 1, 2, 3, and 7. It concludes with issues that require special attention to realize the full potential of ASO-based therapies.


Assuntos
Doença de Huntington , Doenças do Sistema Nervoso , Doença de Parkinson , Humanos , Oligonucleotídeos Antissenso
10.
Ann Clin Transl Neurol ; 7(9): 1594-1607, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32860338

RESUMO

OBJECTIVE: There is a pressing need to identify and validate, minimally invasive, molecular biomarkers that will complement current practices and increase the diagnostic accuracy in Parkinson's disease (PD). Brain-enriched miRNAs regulate all aspects of neuron development and function; importantly, they are secreted by neurons in amounts that can be readily detected in the plasma. Τhe aim of the present study was to validate a set of previously identified brain-enriched miRNAs with diagnostic potential for idiopathic PD and recognize the molecular pathways affected by these deregulated miRNAs. METHODS: RT-qPCR was performed in the plasma of 92 healthy controls and 108 idiopathic PD subjects. Statistical and in silico analyses were used to validate deregulated miRNAs and pathways in PD, respectively. RESULTS: miR-22-3p, miR-124-3p, miR-136-3p, miR-154-5p, and miR-323a-3p levels were found to be differentially expressed between healthy controls and PD patients. miR-330-5p, miR-433-3p, and miR-495-3p levels were overall higher in male subjects. Most of these miRNAs are clustered at Chr14q32 displaying CREB1, CEBPB, and MAZ transcription factor binding sites. Gene Ontology annotation analysis of deregulated miRNA targets revealed that "Protein modification," "Transcription factor activity," and "Cell death" terms were over-represented. Kyoto Encyclopedia of Genes and Genome analysis revealed that "Long-term depression," "TGF-beta signaling," and "FoxO signaling" pathways were significantly affected. INTERPRETATION: We validated a panel of brain-enriched miRNAs that can be used along with other measures for the detection of PD, revealed molecular pathways targeted by these deregulated miRNAs, and identified upstream transcription factors that may be directly implicated in PD pathogenesis.


Assuntos
MicroRNAs/sangue , Doença de Parkinson/diagnóstico , Doença de Parkinson/metabolismo , Idoso , Biomarcadores/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/sangue , Doença de Parkinson/fisiopatologia
11.
Front Cell Dev Biol ; 8: 372, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582692

RESUMO

The mitochondrial lifecycle comprises biogenesis, fusion and cristae remodeling, fission, and breakdown by the autophagosome. This cycle is essential for maintaining proper cellular function, and inhibition of any of these processes results in deterioration of bioenergetics and swift induction of apoptosis, particularly in energy-craving cells such as myocytes and neurons. Regulation of gene expression is a fundamental step in maintaining mitochondrial plasticity, mediated by (1) transcription factors that control the expression of mitochondrial mRNAs and (2) RNA-binding proteins (RBPs) that regulate mRNA splicing, stability, targeting to mitochondria, and translation. More recently, RBPs have been also shown to interact with proteins modulating the mitochondrial lifecycle. Importantly, misexpression or mutations in RBPs give rise to mitochondrial dysfunctions, and there is strong evidence to support that these mitochondrial impairments occur early in disease development, constituting leading causes of pathogenesis. This review presents key aspects of the molecular network of the disease-relevant RBPs, including transactive response DNA-binding protein 43 (TDP43), fused in sarcoma (FUS), T-cell intracellular antigen 1 (TIA1), TIA-related protein (TIAR), and pumilio (PUM) that drive mitochondrial dysfunction in the nervous system.

12.
Ageing Res Rev ; 58: 101023, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32001380

RESUMO

MicroRNAs (miRNAs) are master post-transcriptional regulators of gene expression and their specific footprints reflect disease conditions. Over the last few years, several primary reports have described the deregulation of cell-free miRNAs in Parkinson's disease (PD), however, results have been rather inconsistent due to preanalytical and analytical challenges. This study integrated the data across twenty-four reports to identify steadily deregulated miRNAs that may assist in the path towards biomarker development and molecular characterization of the underlying pathology. Stringent KEGG pathway analysis of the miRNA targets revealed FoxO, Prolactin, TNF, and ErbB signaling pathways as the most significantly enriched categories while Gene Ontology analysis revealed that the protein targets are mostly associated with transcription. Chromosomal location of the consistently deregulated miRNAs revealed that over a third of them were clustered at the same location at Chr14q32 suggesting that they are co-regulated by specific transcription factors. This genomic region is inherently unstable due to expanded TGG repeats and responsible for human abnormalities. Stringent analysis of transcription factor sites surrounding the deregulated miRNAs revealed that CREB1, CEBPB and MAZ sites existed in approximately half of the miRNAs, including all of the miRNAs located at Chr14q32. Additional studies are now needed to determine the biomarker potential of the consistently deregulated miRNAs in PD and the therapeutic implications of these bioinformatics insights.


Assuntos
MicroRNA Circulante , MicroRNAs , Doença de Parkinson , Biomarcadores/análise , Regulação da Expressão Gênica , Humanos , MicroRNAs/genética , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética
13.
RNA Biol ; 17(5): 651-662, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31994436

RESUMO

The TREK family of leak potassium channels has been found to play critical roles in nociception, sensitivity to general anaesthetics, neuroprotection, and memory. The three members of the family, TREK1, TREK2 and TRAAK establish the resting potential and modify the duration, frequency and amplitude of action potentials. Despite their apparent importance, the repertoire of regulatory interactions utilized by cells to control their expression is poorly understood. Herein, the contribution of miRNAs in the regulation of their post-transcriptional gene expression has been examined. Using different assays, miR-124 and to a lesser extent miR-128 and miR-183 were found to reduce TREK1 and TREK2 levels through specific binding to their 3'UTRs. In contrast, miR-9 which was predicted to bind to TRAAK 3'UTR, did not alter its expression. Expression of miR-124, miR-128 and miR-183 was found to mirror that of Trek1 and Trek2 mRNAs during brain development. Moreover, application of proinflammatory mediators in dorsal root ganglion (DRG) neurons revealed an inverse correlation between miR-124 and Trek1 and Trek2 mRNA expression. Voltage clamp recordings of TREK2-mediated currents showed that miR-124 reduced the sensitivity of TREK2-expressing cells to non-aversive warmth stimulation. Overall, these findings reveal a significant regulatory mechanism by which TREK1 and TREK2 expression and hence activity are controlled in neurons and uncover new druggable targets for analgesia and neuroprotection.Abbreviations: microRNA: miRNA; UTR: untranslated region; K2p channels: two-pore domain K+channels; DRG: dorsal root ganglion; CNS: central nervous system; FBS: fetal bovine serum; TuD: Tough Decoy; TREK: tandem P-domain weak inward rectifying K+ (TWIK)-related K+ channel 1; TRAAK: TWIK-related arachidonic acid K+.


Assuntos
Regulação da Expressão Gênica , Ativação do Canal Iônico , MicroRNAs/genética , Neurônios/metabolismo , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Interferência de RNA , Regiões 3' não Traduzidas , Animais , Linhagem Celular , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Genes Reporter , Humanos , Camundongos
14.
Mov Disord ; 35(3): 457-467, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31799764

RESUMO

BACKGROUND: A minimally invasive test for early detection and monitoring of Parkinson's disease (PD) is a highly unmet need for drug development and planning of patient care. Blood plasma represents an attractive source of biomarkers. MicroRNAs (miRNAs) are conserved noncoding RNA molecules that serve as posttranscriptional regulators of gene expression. As opposed to ubiquitously expressed miRNAs that control house-keeping processes, brain-enriched miRNAs regulate diverse aspects of neuron development and function. These include neuron-subtype specification, axonal growth, dendritic morphogenesis, and spine density. Backed by a large number of studies, we now know that the differential expression of neuron-enriched miRNAs leads to brain dysfunction. OBJECTIVES: The aim was to identify subsets of brain-enriched miRNAs with diagnostic potential for familial and idiopathic PD as well as specify the molecular pathways deregulated in PD. METHODS: Initially, brain-enriched miRNAs were selected based on literature review and validation studies in human tissues. Subsequently, real-time reverse transcription polymerase chain reaction was performed in the plasma of 100 healthy controls and 99 idiopathic and 53 genetic (26 alpha-synucleinA53T and 27 glucocerebrosidase) patients. Statistical and bioinformatics analyses were carried out to pinpoint the diagnostic biomarkers and deregulated pathways, respectively. RESULTS: An explicit molecular fingerprint for each of the 3 PD cohorts was generated. Although the idiopathic PD fingerprint was different from that of genetic PD, the molecular pathways deregulated converged between all PD subtypes. CONCLUSIONS: The study provides a group of brain-enriched miRNAs that may be used for the detection and differentiation of PD subtypes. It has also identified the molecular pathways deregulated in PD. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
MicroRNA Circulante , MicroRNAs , Doença de Parkinson , Encéfalo/metabolismo , Humanos , MicroRNAs/genética , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , alfa-Sinucleína/metabolismo
15.
Int J Mol Sci ; 19(8)2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30081499

RESUMO

The timing, dosage and location of gene expression are fundamental determinants of brain architectural complexity. In neurons, this is, primarily, achieved by specific sets of trans-acting RNA-binding proteins (RBPs) and their associated factors that bind to specific cis elements throughout the RNA sequence to regulate splicing, polyadenylation, stability, transport and localized translation at both axons and dendrites. Not surprisingly, misregulation of RBP expression or disruption of its function due to mutations or sequestration into nuclear or cytoplasmic inclusions have been linked to the pathogenesis of several neuropsychiatric and neurodegenerative disorders such as fragile-X syndrome, autism spectrum disorders, spinal muscular atrophy, amyotrophic lateral sclerosis and frontotemporal dementia. This review discusses the roles of Pumilio, Staufen, IGF2BP, FMRP, Sam68, CPEB, NOVA, ELAVL, SMN, TDP43, FUS, TAF15, and TIA1/TIAR in RNA metabolism by analyzing their specific molecular and cellular function, the neurological symptoms associated with their perturbation, and their axodendritic transport/localization along with their target mRNAs as part of larger macromolecular complexes termed ribonucleoprotein (RNP) granules.


Assuntos
Doenças Neurodegenerativas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo , Animais , Humanos , Modelos Biológicos , Doenças Neurodegenerativas/genética , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas/genética
16.
Sci Rep ; 7: 44507, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28291226

RESUMO

Aß peptide that accumulates in Alzheimer's disease brain, derives from proteolytic processing of the amyloid precursor protein (APP) that exists in three main isoforms derived by alternative splicing. The isoform APP695, lacking exons 7 and 8, is predominately expressed in neurons and abnormal neuronal splicing of APP has been observed in the brain of patients with Alzheimer's disease. Herein, we demonstrate that expression of the neuronal members of the ELAVL protein family (nELAVLs) correlate with APP695 levels in vitro and in vivo. Moreover, we provide evidence that nELAVLs regulate the production of APP695; by using a series of reporters we show that concurrent binding of nELAVLs to sequences located both upstream and downstream of exon 7 is required for its skipping, whereas nELAVL-binding to a highly conserved U-rich sequence upstream of exon 8, is sufficient for its exclusion. Finally, we report that nELAVLs block APP exon 7 or 8 definition by reducing the binding of the essential splicing factor U2AF65, an effect facilitated by the concurrent binding of AUF-1. Our study provides new insights into the regulation of APP pre-mRNA processing, supports the role for nELAVLs as neuron-specific splicing regulators and reveals a novel function of AUF1 in alternative splicing.


Assuntos
Processamento Alternativo/genética , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/genética , Fragmentos de Peptídeos/genética , Doença de Alzheimer/patologia , Encéfalo/patologia , Proteína Semelhante a ELAV 2/genética , Regulação da Expressão Gênica , Células HeLa , Ribonucleoproteína Nuclear Heterogênea D0 , Humanos , Família Multigênica/genética , Neurônios/metabolismo , Neurônios/patologia , Ligação Proteica , Isoformas de Proteínas/genética , Precursores de RNA/genética , Fator de Processamento U2AF/genética , Antígeno-1 Intracelular de Células T/genética
17.
Open Biol ; 6(4): 160022, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27248657

RESUMO

Genetic and biochemical studies have established a central role for α-synuclein (SNCA) accumulation in the pathogenesis of Parkinson's disease. Uncovering and subsequently interfering with physiological mechanisms that control SNCA expression is one approach to limit disease progression. To this end, the long and GC-rich 5'-untranslated region (UTR) of SNCA, which is predicted to fold into stable hairpin and G-quadruplex RNA motifs, was investigated for its role in mRNA translation. Inclusion of SNCA 5'-UTR significantly induced expression of both SNCA and luciferase ORF constructs. This effect was not associated with a change in mRNA levels or differential nucleocytoplasmic shuttling. Further, the presence of the 5'-UTR enhanced SNCA synthesis when cap-dependent translation was attenuated with rapamycin treatment. Analysis using multiple methodologies revealed that the 5'-UTR harbours an internal ribosome entry site (IRES) element that spans most of its nucleotide sequence. Signals such as plasma-membrane depolarization, serum starvation and oxidative stress stimulated SNCA protein translation via its 5'-UTR as well as enhanced its IRES activity. Taken together, these data support the idea that the 5'-UTR is an important positive regulator of SNCA synthesis under diverse physiological and pathological conditions, explaining in part the abundance of SNCA in healthy neurons and its accumulation in degenerative cells.


Assuntos
Regiões 5' não Traduzidas/genética , Biossíntese de Proteínas , alfa-Sinucleína/genética , Sequência de Bases , Núcleo Celular/metabolismo , Biologia Computacional , Quadruplex G , Genes Reporter , Células HEK293 , Humanos , Sítios Internos de Entrada Ribossomal/genética , Luciferases/metabolismo , Fases de Leitura Aberta/genética , Regiões Promotoras Genéticas/genética , Transporte Proteico , Capuzes de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Estresse Fisiológico/genética , alfa-Sinucleína/metabolismo
18.
Front Cell Neurosci ; 8: 182, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25071443

RESUMO

Differential expression of microRNAs (miRs) in the brain of patients with neurodegenerative diseases suggests that they may have key regulatory roles in the development of these disorders. Two such miRs, miR-7, and miR-153 have recently been shown to target α-synuclein, a protein critically involved in the pathological process of Parkinson's disease. By using a well-established in culture Parkinson's disease model that of neurotoxin 1-Methyl-4-Phenyl-Pyridinium (MPP(+)), we examined whether miR-7 and miR-153 display neuroprotective properties. Herein, we demonstrate that treatment of cortical neurons with MPP(+) induced a dose-dependent cell death with apoptotic characteristics. This was reflected in altered intracellular signaling characterized by increased levels of activated kinases p38MAPK and ERK1/2 and reduced levels of activated AKT, p70S6K, and SAPK/JNK. Overexpression of miR-7 or miR-153 by adenoviral transduction protected cortical neurons from MPP(+)-induced toxicity, restored neuronal viability and anti-apoptotic BCL-2 protein levels while attenuated activation of caspase-3. Moreover, both miR-7 and miR-153 interfered with MPP(+)-induced alterations in intracellular signaling pathways in a partially overlapping manner; specifically, they preserved activation of mTOR and SAPK/JNK signaling pathways in the MPP(+)-treated neurons, while miR-153 also attenuated MPP(+)-induced activation of p38MAPK. No major effects were observed in the rest of signaling cascades or proteins investigated. Furthermore, the neuroprotective effect of miR-7 and miR-153 was alleviated when MPP(+) was co-administered with rapamycin. Taken together, our results suggest that miR-7 and miR-153 protect neurons from cell death by interfering with the MPP(+)-induced downregulation of mTOR signaling.

19.
Neurosci Bull ; 30(4): 610-26, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24962082

RESUMO

In eukaryotic cells, gene activity is not directly reflected by protein levels because mRNA processing, transport, stability, and translation are co- and post-transcriptionally regulated. These processes, collectively known as the ribonome, are tightly controlled and carried out by a plethora of trans-acting RNA-binding proteins (RBPs) that bind to specific cis elements throughout the RNA sequence. Within the nervous system, the role of RBPs in brain function turns out to be essential due to the architectural complexity of neurons exemplified by a relatively small somal size and an extensive network of projections and connections. Thus far, RBPs have been shown to be indispensable for several aspects of neurogenesis, neurite outgrowth, synapse formation, and plasticity. Consequently, perturbation of their function is central in the etiology of an ever-growing spectrum of neurological diseases, including fragile X syndrome and the neurodegenerative disorders frontotemporal lobar degeneration and amyotrophic lateral sclerosis.


Assuntos
Doenças Neurodegenerativas/genética , Neurônios/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Humanos
20.
Int J Mol Sci ; 14(8): 16280-302, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23965954

RESUMO

MicroRNAs (miRs) are key post-transcriptional regulators that silence gene expression by direct base pairing to target sites of RNAs. They have a wide variety of tissue expression patterns and are differentially expressed during development and disease. Their activity and abundance is subject to various levels of control ranging from transcription and biogenesis to miR response elements on RNAs, target cellular levels and miR turnover. This review summarizes and discusses current knowledge on the regulation of miR activity and concludes with novel non-canonical functions that have recently emerged.


Assuntos
MicroRNAs/genética , Interferência de RNA , Animais , Sequência de Bases , Sítios de Ligação , Humanos , MicroRNAs/metabolismo , Poliadenilação , Sequências Reguladoras de Ácido Nucleico , Transcrição Gênica , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA