Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 112, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31913265

RESUMO

The relaxation of photoexcited nanosystems is a fundamental process of light-matter interaction. Depending on the couplings of the internal degrees of freedom, relaxation can be ultrafast, converting electronic energy in a few fs, or slow, if the energy is trapped in a metastable state that decouples from its environment. Here, we study helium nanodroplets excited resonantly by femtosecond extreme-ultraviolet (XUV) pulses from a seeded free-electron laser. Despite their superfluid nature, we find that helium nanodroplets in the lowest electronically excited states undergo ultrafast relaxation. By comparing experimental photoelectron spectra with time-dependent density functional theory simulations, we unravel the full relaxation pathway: Following an ultrafast interband transition, a void nanometer-sized bubble forms around the localized excitation (He[Formula: see text]) within 1 ps. Subsequently, the bubble collapses and releases metastable He[Formula: see text] at the droplet surface. This study highlights the high level of detail achievable in probing the photodynamics of nanosystems using tunable XUV pulses.

2.
Phys Rev Lett ; 122(13): 133001, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-31012607

RESUMO

Free electrons in a polar liquid can form a bound state via interaction with the molecular environment. This so-called hydrated electron state in water is of fundamental importance, e.g., in cellular biology or radiation chemistry. Hydrated electrons are highly reactive radicals that can either directly interact with DNA or enzymes, or form highly excited hydrogen (H^{*}) after being captured by protons. Here, we investigate the formation of the hydrated electron in real-time employing extreme ultraviolet femtosecond pulses from a free electron laser, in this way observing the initial steps of the hydration process. Using time-resolved photoelectron spectroscopy we find formation timescales in the low picosecond range and resolve the prominent dynamics of forming excited hydrogen states.

3.
Phys Rev Lett ; 112(7): 073401, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24579595

RESUMO

The ionization dynamics of He nanodroplets irradiated with intense femtosecond extreme ultraviolet pulses of up to 1013 W/cm2 power density have been investigated by photoelectron spectroscopy. Helium droplets were resonantly excited to atomiclike 2p states with a photon energy of 21.4 eV, below the ionization potential (Ip), and directly into the ionization continuum with 42.8 eV photons. While electron emission following direct ionization above Ip is well explained within a model based on a sequence of direct electron emission events, the resonant excitation provides evidence of a new, collective ionization mechanism involving many excited atomiclike 2p states. With increasing power density the direct photoline due to an interatomic Coulombic decay disappears. It indicates that ionization occurs due to energy exchange between at least three excited atoms proceeding on a femtosecond time scale. In agreement with recent theoretical work the novel ionization process is very efficient and it is expected to be important for many other systems.


Assuntos
Hélio/química , Modelos Químicos , Nanopartículas/química , Elétrons , Íons/química , Processos Fotoquímicos , Espectroscopia Fotoeletrônica/métodos , Raios Ultravioleta
4.
Sci Rep ; 4: 3621, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24406316

RESUMO

Free electron lasers (FELs) offer the unprecedented capability to study reaction dynamics and image the structure of complex systems. When multiple photons are absorbed in complex systems, a plasma-like state is formed where many atoms are ionized on a femtosecond timescale. If multiphoton absorption is resonantly-enhanced, the system becomes electronically-excited prior to plasma formation, with subsequent decay paths which have been scarcely investigated to date. Here, we show using helium nanodroplets as an example that these systems can decay by a new type of process, named collective autoionization. In addition, we show that this process is surprisingly efficient, leading to ion abundances much greater than that of direct single-photon ionization. This novel collective ionization process is expected to be important in many other complex systems, e.g. macromolecules and nanoparticles, exposed to high intensity radiation fields.

5.
J Chem Phys ; 139(8): 084301, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-24006991

RESUMO

The ionization dynamics of pure He nanodroplets irradiated by Extreme ultraviolet radiation is studied using Velocity-Map Imaging PhotoElectron-PhotoIon COincidence spectroscopy. We present photoelectron energy spectra and angular distributions measured in coincidence with the most abundant ions He(+), He2(+), and He3(+). Surprisingly, below the autoionization threshold of He droplets, we find indications for multiple excitation and subsequent ionization of the droplets by a Penning-like process. At high photon energies we observe inelastic collisions of photoelectrons with the surrounding He atoms in the droplets.

6.
Opt Lett ; 22(18): 1436-8, 1997 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18188262

RESUMO

An atomic streak camera has been constructed that operates from the near to the far infrared. The photocathode used in conventional streak cameras for the conversion of photons to electrons has been replaced by gas-phase atoms in a Rydberg state. The low binding energy of the electron in a Rydberg atom combined with the large photoionization cross section of a Rydberg atom makes Rydberg atoms suitable for use in an infrared streak camera. Operation of the streak camera is demonstrated at 2.6 microm, well beyond the spectral range of any conventional streak camera.

7.
Appl Opt ; 30(36): 5229-34, 1991 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-20717350

RESUMO

A frequency calibration in the tuning range of the ArF excimer laser near 193 nm was performed. Different electronic spectra of NO were measured by laser-induced fluorescence in a cell and in an oxyacetylene flame. Spectra were measured with a frequency-doubled and Raman-shifted dye laser system and with a tunable ArF excimer laser with a modified configuration. A list of absolute frequencies of the B(2)II(upsilon' = 7) ? X(2)II(upsilon'' = 0) and D(2)Sigma(+)(upsilon' = 0) ? X(2)II(upsilon'' = 1) transitions in this spectral region is given, including a more comprehensive assignment of the latter excitation spectrum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA