Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35287795

RESUMO

The pivotal role of the periaqueductal grey (PAG) in fear learning is reinforced by the identification of neurons in male rat ventrolateral PAG (vlPAG) that encode fear memory through signalling the onset and offset of an auditory-conditioned stimulus during presentation of the unreinforced conditioned tone (CS+) during retrieval. Some units only display CS+ onset or offset responses, and the two signals differ in extinction sensitivity, suggesting that they are independent of each other. In addition, understanding cerebellar contributions to survival circuits is advanced by the discovery that (i) reversible inactivation of the medial cerebellar nucleus (MCN) during fear consolidation leads in subsequent retrieval to (a) disruption of the temporal precision of vlPAG offset, but not onset responses to CS+, and (b) an increase in duration of freezing behaviour. And (ii) chemogenetic manipulation of the MCN-vlPAG projection during fear acquisition (a) reduces the occurrence of fear-related ultrasonic vocalisations, and (b) during subsequent retrieval, slows the extinction rate of fear-related freezing. These findings show that the cerebellum is part of the survival network that regulates fear memory processes at multiple timescales and in multiple ways, raising the possibility that dysfunctional interactions in the cerebellar-survival network may underlie fear-related disorders and comorbidities.


Anxiety disorders are a cluster of mental health conditions characterised by persistent and excessive amounts of fear and worry. They affect millions of people worldwide, but treatments can sometimes be ineffective and have unwanted side effects. Understanding which brain regions are involved in fear and anxiety-related behaviours, and how those areas are connected, is the first step towards designing more effective treatments. A region known as the periaqueductal grey (or PAG) sits at the centre of the brain's fear and anxiety network, regulating pain, encoding fear memories and responding to threats and stressors. It also controls survival behaviours such as the 'freeze' response, when an animal is frightened. A more recent addition to the fear and anxiety network is the cerebellum, which sits at the base of the brain. Two-way connections between this region and the PAG have been well described, but how the cerebellum might influence fear and anxiety-related behaviours remains unclear. To explore this role, Lawrenson, Paci et al. investigated whether the cerebellum modulates brain activity within the PAG and if so, how this relates to fear behaviours. Rats had electrodes implanted in their brains to record the activity of nerve cells within the PAG. A common fear-conditioning task was then used to elicit 'freeze' responses: a sound was paired with mild foot shocks until the animals learned to fear the auditory signal. In the rats, a subset of neurons within the PAG responded to the tone, consistent with those cells encoding a fear memory. But when a drug blocked the cerebellum's output during fear conditioning, the timing of the PAG response was less precise and the rats' freeze response lasted longer. Lawrenson, Paci et al. concluded that the cerebellum, through its interactions with the brain's fear and anxiety network, might be responsible for coordinating the most appropriate behavioural response to fear, and how long 'freezing' lasts. In summary, these findings show that the cerebellum is a part of the brain's survival network which regulates fear-memory processes. It raises the possibility that disruption of the cerebellum might underlie anxiety and other fear-related disorders, thereby providing a new target for future therapies.


Assuntos
Medo , Substância Cinzenta Periaquedutal , Animais , Cerebelo/fisiologia , Condicionamento Clássico/fisiologia , Condicionamento Operante/fisiologia , Medo/fisiologia , Masculino , Substância Cinzenta Periaquedutal/fisiologia , Ratos
2.
Neurobiol Dis ; 96: 186-200, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27616424

RESUMO

Neuropathic pain results from neuroplasticity in nociceptive neuronal networks. Here we demonstrate that control of alternative pre-mRNA splicing, through the splice factor serine-arginine splice factor 1 (SRSF1), is integral to the processing of nociceptive information in the spinal cord. Neuropathic pain develops following a partial saphenous nerve ligation injury, at which time SRSF1 is activated in damaged myelinated primary afferent neurons, with minimal found in small diameter (IB4 positive) dorsal root ganglia neurons. Serine arginine protein kinase 1 (SRPK1) is the principal route of SRSF1 activation. Spinal SRPK1 inhibition attenuated SRSF1 activity, abolished neuropathic pain behaviors and suppressed central sensitization. SRSF1 was principally expressed in large diameter myelinated (NF200-rich) dorsal root ganglia sensory neurons and their excitatory central terminals (vGLUT1+ve) within the dorsal horn of the lumbar spinal cord. Expression of pro-nociceptive VEGF-Axxxa within the spinal cord was increased after nerve injury, and this was prevented by SRPK1 inhibition. Additionally, expression of anti-nociceptive VEGF-Axxxb isoforms was elevated, and this was associated with reduced neuropathic pain behaviors. Inhibition of VEGF receptor-2 signaling in the spinal cord attenuated behavioral nociceptive responses to mechanical, heat and formalin stimuli, indicating that spinal VEGF receptor-2 activation has potent pro-nociceptive actions. Furthermore, intrathecal VEGF-A165a resulted in mechanical and heat hyperalgesia, whereas the sister inhibitory isoform VEGF-A165b resulted in anti-nociception. These results support a role for myelinated fiber pathways, and alternative pre-mRNA splicing of factors such as VEGF-A in the spinal processing of neuropathic pain. They also indicate that targeting pre-mRNA splicing at the spinal level could lead to a novel target for analgesic development.


Assuntos
Processamento Alternativo/genética , Fibras Nervosas Mielinizadas/metabolismo , Neuralgia/genética , Neuralgia/patologia , Fatores de Processamento de Serina-Arginina/genética , Animais , Anticorpos/uso terapêutico , Modelos Animais de Doenças , Lateralidade Funcional , Hiperalgesia/fisiopatologia , Masculino , Bainha de Mielina/patologia , Fibras Nervosas Mielinizadas/patologia , Neuralgia/tratamento farmacológico , Medição da Dor , Ftalazinas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/uso terapêutico , Ratos , Ratos Wistar , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Medula Espinal/patologia , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/imunologia , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
3.
J Physiol ; 592(16): 3611-24, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24879873

RESUMO

Descending controls of spinal nociceptive processing play a critical role in the development of inflammatory hyperalgesia. Acute peripheral nociceptor sensitization drives spinal sensitization and activates spino-supraspinal-spinal loops leading to descending inhibitory and facilitatory controls of spinal neuronal activity that further modify the extent and degree of the pain state. The afferent inputs from hairy and glabrous skin are distinct with respect to both the profile of primary afferent classes and the degree of their peripheral sensitization. It is not known whether these differences in afferent input differentially engage descending control systems to different extents or in different ways. Injection of complete Freund's adjuvant resulted in inflammation and swelling of hairy hind foot skin in rats, a transient thermal hyperalgesia lasting <2 h, and longlasting primary mechanical hyperalgesia (≥7 days). Much longer lasting thermal hyperalgesia was apparent in glabrous skin (1 h to >72 h). In hairy skin, transient hyperalgesia was associated with sensitization of withdrawal reflexes to thermal activation of either A- or C-nociceptors. The transience of the hyperalgesia was attributable to a rapidly engaged descending inhibitory noradrenergic mechanism, which affected withdrawal responses to both A- and C-nociceptor activation and this could be reversed by intrathecal administration of yohimbine (α-2-adrenoceptor antagonist). In glabrous skin, yohimbine had no effect on an equivalent thermal inflammatory hyperalgesia. We conclude that acute inflammation and peripheral nociceptor sensitization in hind foot hairy skin, but not glabrous skin, rapidly activates a descending inhibitory noradrenergic system. This may result from differences in the engagement of descending control systems following sensitization of different primary afferent classes that innervate glabrous and hairy skin.


Assuntos
Hiperalgesia/fisiopatologia , Nociceptividade , Nociceptores/fisiologia , Nervos Periféricos/fisiologia , Pele/inervação , Medula Espinal/fisiologia , Vias Aferentes/fisiologia , Animais , Temperatura Alta , Masculino , Ratos , Ratos Wistar , Reflexo , Pele/citologia , Tato , Lã/citologia , Lã/inervação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA