Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mater Horiz ; 10(1): 257-267, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36409220

RESUMO

Buildings are significant end-users of global energy. About 20% of the energy consumption worldwide is used for maintaining a comfortable indoor climate. Therefore, passive systems for indoor temperature and humidity regulation that can respond to environmental changes are very promising to reduce buildings' energy consumption. We developed a process to improve the responsiveness of wood to humidity changes by laser-drilling microscopic holes and incorporating a hygroscopic salt (calcium chloride). The resulting "transpiring wood" displays superior water adsorption capacity and high moisture exchange rate, allowing regulation of humidity and temperature by the exchange of moisture with the surrounding air. We proved that the hygrothermal performance of transpiring wood can be used to regulate indoor climate, with associated energy savings, for various climate types, thus favoring its application in the building sector. The reduction of temperature fluctuations, thanks to the buffering of temperature peaks, can lead to an indirect energy saving of about 10% for cooling and between 4-27% for heating depending on the climate. Furthermore, our transpiring wood meets different sustainability criteria, from raw materials to the fabrication process, resulting in a product with a low overall environmental impact and that is easy to recycle.


Assuntos
Conservação de Recursos Energéticos , Madeira , Conservação de Recursos Energéticos/métodos , Clima , Temperatura , Temperatura Baixa
2.
Nat Commun ; 13(1): 3680, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760793

RESUMO

Ecologically friendly wood electronics will help alleviating the shortcomings of state-of-art cellulose-based "green electronics". Here we introduce iron-catalyzed laser-induced graphitization (IC-LIG) as an innovative approach for engraving large-scale electrically conductive structures on wood with very high quality and efficiency, overcoming the limitations of conventional LIG including high ablation, thermal damages, need for multiple lasing steps, use of fire retardants and inert atmospheres. An aqueous bio-based coating, inspired by historical iron-gall ink, protects wood from laser ablation and thermal damage while promoting efficient graphitization and smoothening substrate irregularities. Large-scale (100 cm2), highly conductive (≥2500 S m-1) and homogeneous surface areas are engraved single-step in ambient atmosphere with a conventional CO2 laser, even on very thin (∼450 µm) wood veneers. We demonstrate the validity of our approach by turning wood into highly durable strain sensors, flexible electrodes, capacitive touch panels and an electroluminescent LIG-based device.


Assuntos
Ferro , Madeira , Catálise , Eletrônica , Lasers
3.
Sci Rep ; 11(1): 1621, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452425

RESUMO

The brick-and-mortar architecture of biological nacre has inspired the development of synthetic composites with enhanced fracture toughness and multiple functionalities. While the use of metals as the "mortar" phase is an attractive option to maximize fracture toughness of bulk composites, non-mechanical functionalities potentially enabled by the presence of a metal in the structure remain relatively limited and unexplored. Using iron as the mortar phase, we develop and investigate nacre-like composites with high fracture toughness and stiffness combined with unique magnetic, electrical and thermal functionalities. Such metal-ceramic composites are prepared through the sol-gel deposition of iron-based coatings on alumina platelets and the magnetically-driven assembly of the pre-coated platelets into nacre-like architectures, followed by pressure-assisted densification at 1450 °C. With the help of state-of-the-art characterization techniques, we show that this processing route leads to lightweight inorganic structures that display outstanding fracture resistance, show noticeable magnetization and are amenable to fast induction heating. Materials with this set of properties might find use in transport, aerospace and robotic applications that require weight minimization combined with magnetic, electrical or thermal functionalities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA