Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1343024, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784378

RESUMO

Background: Around 20% of the population in Northern and Central Europe is affected by birch pollen allergy, with the major birch pollen allergen Bet v 1 as the main elicitor of allergic reactions. Together with its cross-reactive allergens from related trees and foods, Bet v 1 causes an impaired quality of life. Hence, new treatment strategies were elaborated, demonstrating the effectiveness of blocking IgG antibodies on Bet v 1-induced IgE-mediated reactions. A recent study provided evidence for the first time that Bet v 1-specific nanobodies reduce patients´ IgE binding to Bet v 1. In order to increase the potential to outcompete IgE recognition of Bet v 1 and to foster cross-reactivity and cross-protection, we developed Bet v 1-specific nanobody trimers and evaluated their capacity to suppress polyclonal IgE binding to corresponding allergens and allergen-induced basophil degranulation. Methods: Nanobody trimers were engineered by adding isoleucine zippers, thus enabling trimeric formation. Trimers were analyzed for their cross-reactivity, binding kinetics to Bet v 1, and related allergens, and patients' IgE inhibition potential. Finally, their efficacy to prevent basophil degranulation was investigated. Results: Trimers showed enhanced recognition of cross-reactive allergens and increased efficiency to reduce IgE-allergen binding compared to nanobody monomers. Furthermore, trimers displayed slow dissociation rates from allergens and suppressed allergen-induced mediator release. Conclusion: We generated high-affine nanobody trimers that target Bet v 1 and related allergens. Trimers blocked IgE-allergen interaction by competing with IgE for allergen binding. They inhibited IgE-mediated release of biological mediators, demonstrating a promising potential to prevent allergic reactions caused by Bet v 1 and relatives.


Assuntos
Alérgenos , Antígenos de Plantas , Reações Cruzadas , Imunoglobulina E , Anticorpos de Domínio Único , Imunoglobulina E/imunologia , Imunoglobulina E/metabolismo , Humanos , Antígenos de Plantas/imunologia , Anticorpos de Domínio Único/imunologia , Reações Cruzadas/imunologia , Alérgenos/imunologia , Basófilos/imunologia , Basófilos/metabolismo , Ligação Proteica , Rinite Alérgica Sazonal/imunologia , Multimerização Proteica
2.
J Allergy Clin Immunol ; 151(5): 1371-1378.e5, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36657603

RESUMO

BACKGROUND: The induction of allergen-specific IgE-blocking antibodies is a hallmark of allergen immunotherapy (AIT). The inhibitory bioactivity has largely been attributed to IgG4; however, our recent studies indicated the dominance of IgG1 early in AIT. OBJECTIVES: Here, the IgE-blocking activity and avidity of allergen-specific IgG1 and IgG4 antibodies were monitored throughout 3 years of treatment. METHODS: Serum samples from 24 patients were collected before and regularly during AIT with birch pollen. Bet v 1-specific IgG1 and IgG4 levels were determined by ELISA and ImmunoCAP, respectively. Unmodified and IgG1- or IgG4-depleted samples were compared for their inhibition of Bet v 1-induced basophil activation. The stability of Bet v 1-antibody complexes was compared by ELISA and by surface plasmon resonance. RESULTS: Bet v 1-specific IgG1 and IgG4 levels peaked at 12 and 24 months of AIT, respectively. Serological IgE-blocking peaked at 6 months and remained high thereafter. In the first year of therapy, depletion of IgG1 clearly diminished the inhibition of basophil activation while the absence of IgG4 hardly reduced IgE-blocking. Then, IgG4 became the main inhibitory isotype in most individuals. Both isotypes displayed high avidity to Bet v 1 ab initio of AIT, which did not increase during treatment. Bet v 1-IgG1 complexes were enduringly more stable than Bet v 1-IgG4 complexes were. CONCLUSIONS: In spite of the constant avidity of AIT-induced allergen-specific IgG1 and IgG4 antibodies, their dominance in IgE-blocking shifted in the course of treatment. The blocking activity of allergen-specific IgG1 should not be underestimated, particularly early in AIT.


Assuntos
Alérgenos , Pólen , Humanos , Anticorpos Bloqueadores , Antígenos de Plantas , Imunoglobulina E , Dessensibilização Imunológica , Imunoglobulina G
3.
Front Immunol ; 13: 1022418, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439110

RESUMO

The nasal cavity is an important site of allergen entry. Hence, it represents an organ where trans-epithelial allergen penetration and subsequent IgE-mediated allergic inflammation can potentially be inhibited. Intercellular adhesion molecule 1 (ICAM-1) is highly expressed on the surface of respiratory epithelial cells in allergic patients. It was identified as a promising target to immobilize antibody conjugates bispecific for ICAM-1 and allergens and thereby block allergen entry. We have previously characterized a nanobody specific for the major birch pollen allergen Bet v 1 and here we report the generation and characterization of ICAM-1-specific nanobodies. Nanobodies were obtained from a camel immunized with ICAM-1 and a high affinity binder was selected after phage display (Nb44). Nb44 was expressed as recombinant protein containing HA- and His-tags in Escherichia coli (E.coli) and purified via affinity chromatography. SDS-PAGE and Western blot revealed a single band at approximately 20 kDa. Nb44 bound to recombinant ICAM-1 in ELISA, and to ICAM-1 expressed on the human bronchial epithelial cell line 16HBE14o- as determined by flow cytometry. Experiments conducted at 4°C and at 37°C, to mimic physiological conditions, yielded similar percentages (97.2 ± 1.2% and 96.7 ± 1.5% out of total live cells). To confirm and visualize binding, we performed immunofluorescence microscopy. While Texas Red Dextran was rapidly internalized Nb44 remained localized on the cell surface. Additionally, we determined the strength of Nb44 and ICAM-1 interaction using surface plasmon resonance (SPR). Nb44 bound ICAM-1 with high affinity (10-10 M) and had slow off-rates (10-4 s-1). In conclusion, our results showed that the selected ICAM-1-specific nanobody bound ICAM-1 with high affinity and was not internalized. Thus, it could be further used to engineer heterodimers with allergen-specific nanobodies in order to develop topical treatments of pollen allergy.


Assuntos
Hipersensibilidade , Rinite Alérgica Sazonal , Anticorpos de Domínio Único , Animais , Humanos , Molécula 1 de Adesão Intercelular , Alérgenos , Hipersensibilidade/terapia , Camelus
4.
Allergy ; 77(6): 1751-1760, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34837242

RESUMO

BACKGROUND: Recent studies showed that a single injection of human monoclonal allergen-specific IgG antibodies significantly reduced allergic symptoms in birch pollen-allergic patients. Since the production of full monoclonal antibodies in sufficient amounts is laborious and expensive, we sought to investigate if smaller recombinant allergen-specific antibody fragments, that is, nanobodies, have similar protective potential. For this purpose, nanobodies specific for Bet v 1, the major birch pollen allergen, were generated to evaluate their efficacy to inhibit IgE-mediated responses. METHODS: A cDNA-VHH library was constructed from a camel immunized with Bet v 1 and screened for Bet v 1 binders encoding sequences by phage display. Selected nanobodies were expressed, purified, and analyzed in regards of epitope-specificity and affinity to Bet v 1. Furthermore, cross-reactivity to Bet v 1-homologues from alder, hazel and apple, and their usefulness to inhibit IgE binding and allergen-induced basophil activation were investigated. RESULTS: We isolated three nanobodies that recognize Bet v 1 with high affinity and cross-react with Aln g 1 (alder) and Cor a 1 (hazel). Their epitopes were mapped to the alpha-helix at the C-terminus of Bet v 1. All nanobodies inhibited allergic patients' polyclonal IgE binding to Bet v 1, Aln g 1, and Cor a 1 and partially suppressed Bet v 1-induced basophil activation. CONCLUSION: We identified high-affinity Bet v 1-specific nanobodies that recognize an important IgE epitope and reduce allergen-induced basophil activation revealing the first proof that allergen-specific nanobodies are useful tools for future treatment of pollen allergy.


Assuntos
Hipersensibilidade , Anticorpos de Domínio Único , Alérgenos , Antígenos de Plantas , Epitopos , Humanos , Imunoglobulina E , Proteínas de Plantas , Pólen
5.
J Immunol ; 186(9): 5333-44, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21451110

RESUMO

Allergic inflammation is based on the cross-linking of mast cell and basophil-bound IgE Abs and requires at least two binding sites for IgE on allergens, which are difficult to characterize because they are often conformational in nature. We studied the IgE recognition of birch pollen allergen Bet v 1, a major allergen for >100 million allergic patients. Monoclonal and polyclonal Abs raised against Bet v 1-derived peptides were used to compete with allergic patients' IgE binding to Bet v 1 to search for sequences involved in IgE recognition. Strong inhibitions of patients' IgE binding to Bet v 1 (52-75%) were obtained with mAbs specific for two peptides comprising aa 29-58 (P2) and aa 73-103 (P6) of Bet v 1. As determined by surface plasmon resonance, mAb2 specific for P2 and mAb12 specific for P6 showed high affinity, but only polyclonal rabbit anti-P2 and anti-P6 Abs or a combination of mAbs inhibited allergen-induced basophil degranulation. Thus, P2 and P6 define a surface patch on the Bet v 1 allergen, which allows simultaneous binding of several different IgE Abs required for efficient basophil and mast cell activation. This finding explains the high allergenic activity of the Bet v 1 allergen. The approach of using peptide-specific Abs for the mapping of conformational IgE epitopes on allergens may be generally applicable. It may allow discriminating highly allergenic from less allergenic allergen molecules and facilitate the rational design of active and passive allergen-specific immunotherapy strategies.


Assuntos
Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos/imunologia , Antígenos de Plantas/imunologia , Mapeamento de Epitopos/métodos , Epitopos de Linfócito B/imunologia , Imunoglobulina E/imunologia , Sequência de Aminoácidos , Animais , Antígenos de Plantas/química , Basófilos/imunologia , Betula/imunologia , Ligação Competitiva , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática , Epitopos de Linfócito B/química , Humanos , Hipersensibilidade/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/imunologia , Pólen/imunologia , Coelhos , Homologia de Sequência de Aminoácidos
6.
Langenbecks Arch Surg ; 395(4): 351-7, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20333398

RESUMO

PURPOSE: Paneth cells are part of the innate mucosal immunity of the gut with possible regulatory function. This study intends to identify the gene expression pattern of the orthotopic and metaplastic Paneth cells, searching for differences between metaplastic occurrence between Crohn's disease and ulcerative colitis. METHODS: Paneth cells were collected in RNAse-free conditions via micro dissection. RNA isolation and super amplification was followed by microarray analysis of whole genome expression activity of the orthotopic and metaplastic Paneth cells. Immunohistology of beta-catenin and Frizzled-5 receptor was performed. RESULTS: Histological analysis showed no morphological or secretory change (Frizzled-5 receptor and beta-catenin) in orthotopic and metaplastic Paneth cells. Microarray analysis indicated an increased, but not mutant activation of Wnt/beta-catenin signaling and firstly showed expression of NALP 1, 7, 8 and 11 in metaplastic Paneth cells. CONCLUSIONS: Paneth cells might play a NALP-mediated role in the pathogenesis of IBD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Doenças Inflamatórias Intestinais/metabolismo , Celulas de Paneth/metabolismo , Colite Ulcerativa/metabolismo , Doença de Crohn/metabolismo , Perfilação da Expressão Gênica , Humanos , Íleo/metabolismo , Imuno-Histoquímica , Celulas de Paneth/patologia , Biossíntese de Proteínas , Proteínas/metabolismo
7.
J Immunol ; 182(8): 4817-29, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19342660

RESUMO

IgE is a central molecule in allergic disease. We have isolated cDNAs coding for the heavy and light chains of a murine mAb specific to human IgE and expressed a recombinant single-chain variable fragment (ScFv) derived thereof in Escherichia coli. The purified recombinant ScFv has a molecular mass of 28 kDa as measured by mass spectrometry and shows a beta-sheet fold as determined by circular dichroism. In biosensor-based studies it was demonstrated that the ScFv rapidly and stably binds to human IgE with an affinity of K(D) of 1.52 x 10(-10) M, which is almost as high as the affinity of IgE for FcepsilonRI, and that the ScFv is able to recognize FcepsilonRI-bound IgE and to prevent IgE binding to FcepsilonRI. The ScFv reacts specifically with IgE but not with other isotypes, allows the measurement of allergen-specific IgE in serum samples, and specifically targets cells that contain FcepsilonRI- or FcepsilonRII-bound IgE or that secrete IgE. Using negative-stain electron microscopy we demonstrated the formation of bimolecular complexes consisting of two ScFv molecules and one IgE and trimolecular complexes consisting of IgE, FcepsilonRI, and ScFv in which only one ScFv is able to bind to IgE. Accordingly, we found that the ScFv does not cross-link basophil-bound IgE and hence does not induce histamine release or activation of basophils as demonstrated by FACS analysis of CD203c expression and by histamine release experiments. In vivo skin testing confirmed the lack of allergenic activity of the ScFv. The recombinant ScFv may represent a universal tool for the IgE-targeted treatment of allergies.


Assuntos
Anafilaxia/imunologia , Imunoglobulina E/biossíntese , Fragmentos Fab das Imunoglobulinas/biossíntese , Alérgenos/imunologia , Sequência de Aminoácidos , Anafilaxia/genética , Anafilaxia/metabolismo , Animais , Sequência de Bases , Basófilos/imunologia , Dicroísmo Circular , Humanos , Imunoglobulina E/genética , Imunoglobulina E/metabolismo , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/metabolismo , Fragmentos de Imunoglobulinas , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Ligação Proteica/genética , Ligação Proteica/imunologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
Drug Metab Dispos ; 34(9): 1582-99, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16763017

RESUMO

Biliary excretion of bile salts and other bile constituents from hepatocytes is mediated by the apical (canalicular) transporters P-glycoprotein 3 (MDR3, ABCB4) and the bile salt export pump (ABCB11). Mutations in ABCB4 and ABCB11 contribute to cholestatic diseases [e.g., progressive familial intrahepatic cholestasis 2 (PFIC2), PFIC3, and intrahepatic cholestasis of pregnancy], and our objective was to establish genetic variability and haplotype structures of ABCB4 and ABCB11 in healthy populations of different ethnic backgrounds. All coding exons, 5 of 6 noncoding exons, 50 to 300 base pairs of the flanking intronic regions, and 2.5 to 2.8 kilobase pairs of the promoter regions of ABCB4 and ABCB11 were sequenced in 159 and 196 DNA samples of Caucasian, African-American, Japanese, and Korean origin. In total, 76 and 86 polymorphisms were identified in ABCB4 and ABCB11, respectively; among them, 14 and 28 exonic polymorphisms, and 8 and 10 protein-altering variants, of which 4 were predicted to have functional consequences. Both genes showed substantial ethnic differences with respect to allele number, frequency of common and population-specific sites, and patterns of linkage disequilibrium. Population genetic analysis suggested some selective pressure against changes in the protein, supporting the important endogenous role of these transporters. Haplotype variability was greater in ABCB11 than in ABCB4. An ABCB11 promoter haplotype was associated with significant decrease of activity compared with wild type. Our results contribute to a better understanding of the molecular basis and of ethnic differences in drug response, and provide a valuable tool for future research on the heredity of cholestatic liver injury.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Povo Asiático/genética , Negro ou Afro-Americano/genética , Haplótipos , Polimorfismo de Nucleotídeo Único , População Branca/genética , Região 5'-Flanqueadora/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Sequência de Aminoácidos , Ácidos e Sais Biliares/metabolismo , Linhagem Celular Tumoral , Colestase/etnologia , Colestase/genética , Colestase/metabolismo , Frequência do Gene , Genes Reporter , Testes Genéticos , Humanos , Desequilíbrio de Ligação , Fígado/metabolismo , Luciferases , Modelos Genéticos , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Análise de Sequência de DNA/métodos , Transfecção
9.
Curr Genet ; 43(1): 45-53, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12684844

RESUMO

The genetic transformation of plastids of higher plants has developed into a powerful approach for both basic research and biotechnology. Due to the high copy number of the plastid genome per plastid and per cell, repeated cycles of shoot regeneration under conditions selective for the modified plastid chromosome are required to obtain transformants entirely lacking wild-type plastid genomes. The presence of promiscuous plastid DNA in nuclear and/or mitochondrial genomes that generally contaminate even gradient-purified plastid fractions reduces the applicability of the highly sensitive PCR approach to monitor the absence of residual wild-type plastid chromosomes in transformed lines. It is therefore difficult, or even impossible, to assess reliably the hetero- or homoplastomic state of plastid transformants in this manner. By analysing wild-type and transplastomic mutants of tobacco, we demonstrate that separation of plastid chromosomes isolated from gradient-purified plastid fractions by pulsed-field gel electrophoresis can overcome the problem of (co)amplification of interfering promiscuous plastid DNA. PCR analyses with primers specific for plastid, mitochondrial and nuclear genes reveal an impressive purity of such plastid DNA fractions at a detection limit of less than one wild-type plastid chromosome copy per ten transplastomic cells.


Assuntos
DNA/análise , Plastídeos/genética , Análise de Sequência de DNA , Eletroforese em Gel de Campo Pulsado , Técnicas de Transferência de Genes , Reação em Cadeia da Polimerase , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA