Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 12(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37111427

RESUMO

Streptococcus suis, both a common colonizer of the porcine upper respiratory tract and an invasive pig pathogen, successfully adapts to different host environments encountered during infection. Whereas the initial infection mainly occurs via the respiratory tract, in a second step, the pathogen can breach the epithelial barrier and disseminate within the whole body. Thereby, the pathogen reaches other organs such as the heart, the joints, or the brain. In this review, we focus on the role of S. suis metabolism for adaptation to these different in vivo host niches to encounter changes in nutrient availability, host defense mechanisms and competing microbiota. Furthermore, we highlight the close link between S. suis metabolism and virulence. Mutants deficient in metabolic regulators often show an attenuation in infection experiments possibly due to downregulation of virulence factors, reduced resistance to nutritive or oxidative stress and to phagocytic activity. Finally, metabolic pathways as potential targets for new therapeutic strategies are discussed. As antimicrobial resistance in S. suis isolates has increased over the last years, the development of new antibiotics is of utmost importance to successfully fight infections in the future.

2.
Sci Rep ; 12(1): 13920, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35978073

RESUMO

Streptococcus suis, a common member of the porcine respiratory microbiota, can cause life-threatening diseases in pigs as well as humans. A previous study identified the gene trpX as conditionally essential for in vivo survival by intrathecal infection of pigs with a transposon library of S. suis strain 10. Here, we characterized trpX, encoding a putative tryptophan/tyrosine transport system substrate-binding protein, in more detail. We compared growth capacities of the isogenic trpX-deficient mutant derivative strain 10∆trpX with its parent. Growth experiments in chemically defined media (CDM) revealed that growth of 10∆trpX depended on tryptophan concentration, suggesting TrpX involvement in tryptophan uptake. We demonstrated that trpX is part of an operon structure and co-transcribed with two additional genes encoding a putative permease and ATPase, respectively. Bioinformatics analysis identified a putative tryptophan T-box riboswitch in the 5' untranslated region of this operon. Finally, qRT-PCR and a reporter activation assay revealed trpX mRNA induction under tryptophan-limited conditions. In conclusion, our study showed that TrpX is part of a putative tryptophan ABC transporter system regulated by a T-box riboswitch probably functioning as a substrate-binding protein. Due to the tryptophan auxotrophy of S. suis, TrpX plays a crucial role for metabolic adaptation and growth during infection.


Assuntos
Riboswitch , Infecções Estreptocócicas , Streptococcus suis , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Proteínas de Transporte/metabolismo , Humanos , Óperon/genética , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/veterinária , Streptococcus suis/metabolismo , Suínos , Triptofano/metabolismo
3.
Microbiologyopen ; 10(5): e1234, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34713609

RESUMO

Streptococcus suis, an emerging zoonotic pathogen, causes invasive diseases in pigs, including sepsis, meningitis, endocarditis, pneumonia, and arthritis. Importantly, similar pathologies are reported in human S. suis infections. In previous work, the locus SSU0375 of S. suis strain P1.7 had been identified as a conditionally essential gene by intrathecal experimental infection of pigs with a transposon library of S. suis. This study aimed to identify the function of the corresponding gene product. Bioinformatics analysis and homology modeling revealed sequence and structural homologies with the Streptococcus pneumoniae mid-cell-anchored protein Z (MapZ) that is involved in cell division in different bacterial species. Indeed, depletion of this locus in S. suis strain 10 revealed a growth defect as compared to the wild type. Electron microscopy analysis of the corresponding mutant demonstrated morphological growth defects as compared to the wild-type strain, including an irregular cell shape and size as well as mispositioned division septa. Light microscopy and subsequent quantitative image analysis confirmed these morphological alterations. In the genetic rescue strain, the wild-type phenotype was completely restored. In summary, we proposed that SSU0375 or the corresponding locus in strain 10 encode for a S. suis MapZ homolog that guides septum positioning as evidenced for other members of the Streptococci family.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Divisão Celular , Citocinese , Streptococcus suis/genética , Streptococcus suis/metabolismo , Animais , Biologia Computacional/métodos , Genes Essenciais , Humanos , Mutação , Infecções Estreptocócicas/microbiologia , Streptococcus pneumoniae/genética , Streptococcus suis/citologia
4.
Microorganisms ; 9(2)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673302

RESUMO

Streptococcus suis is a common pathogen colonising the respiratory tract of pigs. It can cause meningitis, sepsis and pneumonia leading to economic losses in the pig industry worldwide. Cyclooxygenase-2 (COX-2) and its metabolites play an important regulatory role in different biological processes like inflammation modulation and immune activation. In this report we analysed the induction of COX-2 and the production of its metabolite prostaglandin E2 (PGE2) in a porcine precision-cut lung slice (PCLS) model. Using Western blot analysis, we found a time-dependent induction of COX-2 in the infected tissue resulting in increased PGE2 levels. Immunohistological analysis revealed a strong COX-2 expression in the proximity of the bronchioles between the ciliated epithelial cells and the adjacent alveolar tissue. The morphology, location and vimentin staining suggested that these cells are subepithelial bronchial fibroblasts. Furthermore, we showed that COX-2 expression as well as PGE2 production was detected following infection with two prevalent S. suis serotypes and that the pore-forming toxin suilysin played an important role in this process. Therefore, this study provides new insights in the response of porcine lung cells to S. suis infections and serves as a basis for further studies to define the role of COX-2 and its metabolites in the inflammatory response in porcine lung tissue during infections with S. suis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA