Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Invertebr Syst ; 382024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38744526

RESUMO

Despite discovery more than 100years ago and documented global occurrence from shallow waters to the deep sea, the life cycle of the enigmatic crustacean y-larvae isincompletely understood and adult forms remain unknown. To date, only 2 of the 17 formally described species, all based on larval stages, have been investigated using an integrative taxonomic approach. This approach provided descriptions of the morphology of the naupliar and cyprid stages, and made use of exuvial voucher material and DNA barcodes. To improve our knowledge about the evolutionary history and ecological importance of y-larvae, we developed a novel protocol that maximises the amount of morpho-ecological and molecular data that can be harvested from single larval specimens. This includes single-specimen DNA barcoding and daily imaging of y-nauplii reared in culture dishes, mounting of the last naupliar exuviae on a slide as a reference voucher, live imaging of the y-cyprid instar that follows, and fixation, DNA extraction, amplification and sequencing of the y-cyprid specimen. Through development and testing of a suite of new primers for both nuclear and mitochondrial protein-coding and ribosomal genes, we showcase how new sequence data can be used to estimate the phylogeny of Facetotecta. We expect that our novel procedure will help to unravel the complex systematics of y-larvae and show how these fascinating larval forms have evolved. Moreover, we posit that our protocols should work on larval specimens from a diverse array of moulting marine invertebrate taxa.


Assuntos
Código de Barras de DNA Taxonômico , Larva , Animais , Código de Barras de DNA Taxonômico/métodos , Larva/genética , Larva/anatomia & histologia , Larva/crescimento & desenvolvimento , Crustáceos/genética , Crustáceos/classificação , Crustáceos/anatomia & histologia , Especificidade da Espécie , Filogenia
2.
Mol Ecol Resour ; 24(3): e13911, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38063371

RESUMO

PCR-based high-throughput sequencing has permitted comprehensive resolution analyses of zooplankton diversity dynamics. However, significant methodological issues still surround analyses of complex bulk community samples, not least as in prevailing PCR-based approaches. Marine drifting animals-zooplankton-play essential ecological roles in the pelagic ecosystem, transferring energy and elements to higher trophic levels, such as fishes, cetaceans and others. In the present study, we collected 48 size-fractionated zooplankton samples in the vicinity of a coral reef island with environmental gradients. To investigate the spatiotemporal dynamics of zooplankton diversity patterns and the effect of PCR amplification biases across these complex communities, we first took metatranscriptomics approach. Comprehensive computational analyses revealed a clear pattern of higher/lower homogeneity in smaller/larger zooplankton compositions across samples respectively. Our study thus suggests changes in the role of dispersal across the sizes. Next, we applied in silico PCR to the metatranscriptomics datasets, in order to estimate the extent of PCR amplification bias. Irrespective of stringency criteria, we observed clear separations of size fraction sample clusters in both metatranscriptomics and in silico datasets. In contrast, the pattern-smaller-fractioned communities had higher compositional homogeneity than larger ones-was observed in the metatranscriptomics data but not in the in silico datasets. To investigate this discrepancy further, we analysed the mismatches of widely used mitochondrial CO1 primers and identified priming site mismatches likely driving PCR-based biases. Our results suggest the use of metatranscriptomics or, although less ideal, redesigning the CO1 primers is necessary to circumvent these issues.


Assuntos
Recifes de Corais , Ecossistema , Animais , Zooplâncton/genética , Peixes , Reação em Cadeia da Polimerase
3.
Mol Ecol ; 32(18): 5071-5088, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37584177

RESUMO

Acquisition of new genes often results in the emergence of novel functions and is a key step in lineage-specific adaptation. As a group of sessile crustaceans, barnacles establish permanent attachment through initial cement secretion at the larval phase followed by continuous cement secretion in juveniles and adults. However, the origins and evolution of barnacle larval and adult cement proteins remain poorly understood. By performing microdissection of larval cement glands, transcriptome and shotgun proteomics and immunohistochemistry validation, we identified 30 larval and 27 adult cement proteins of the epibiotic turtle barnacle Chelonibia testudinaria, of which the majority are stage- and barnacle-specific. While only two proteins, SIPC and CP100K, were expressed in both larvae and adults, detection of protease inhibitors and the cross-linking enzyme lysyl oxidase paralogs in larvae and adult cement. Other barnacle-specific cement proteins such as CP100k and CP52k likely share a common origin dating back at least to the divergence of Rhizocephala and Thoracica. Different CP52k paralogues could be detected in larval and adult cement, suggesting stage-specific cement proteins may arise from duplication followed by changes in expression timing of the duplicates. Interestingly, the biochemical properties of larval- and adult-specific CP52k paralogues exhibited remarkable differences. We conclude that barnacle larval and adult cement systems evolved independently, and both emerged from co-option of existing genes and de novo formation, duplication and functional divergence of lineage-specific cement protein genes. Our findings provide important insights into the evolutionary mechanisms of bioadhesives in sessile marine invertebrates.


Assuntos
Thoracica , Animais , Thoracica/genética , Thoracica/metabolismo , Proteínas/genética , Larva/genética , Larva/metabolismo , Transcriptoma/genética
4.
Mol Phylogenet Evol ; 184: 107780, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37031710

RESUMO

Resolving the evolutionary history of organisms is a major goal in biology. Yet for some taxa the diversity, phylogeny, and even adult stages remain unknown. The enigmatic crustacean "y-larvae" (Facetotecta) are one particularly striking example. Here, we use extensive video-imaging and single-specimen molecular sequencing of >200 y-larval specimens to comprehensively explore for the first time their evolutionary history and diversity. This integrative approach revealed five major clades of Facetotecta, four of which encompass a considerable larval diversity. Whereas morphological analyses recognized 35 y-naupliar "morphospecies", molecular species-delimitation analyses suggested the existence of between 88 and 127 species. The phenotypic and genetic diversity between the morphospecies suggests that a more elaborate classification than the current one-genus approach is needed. Morphology and molecular data were highly congruent at shallower phylogenetic levels, but no morphological synapomorphies could be unambiguously identified for major clades, which mostly comprise both planktotrophic and lecithotrophic y-nauplii. We argue that lecithotrophy arose several times independently whereas planktotrophic y-nauplii, which are structurally more similar across clades, most likely display the ancestral feeding mode of Facetotecta. We document a remarkably complex and highly diverse phylogenetic backbone for a taxon of larval marine crustaceans, the full life cycle of which remains a mystery.


Assuntos
Evolução Biológica , Crustáceos , Animais , Filogenia , Larva/anatomia & histologia , Estágios do Ciclo de Vida
5.
Ecol Evol ; 12(11): e9488, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36415881

RESUMO

Although the naupliar and cypridiform stages of the enigmatic y-larvae of Facetotecta have been found in the marine plankton worldwide, they still represent the last significant group of crustaceans for which the adult forms are still unknown. From a number of y-cyprids representing different taxa from different locations, we employ scanning electron microscopy to describe fine morphological details of all external structures of this unique larval form. We document different segmentation patterns of the abdomen and presence/absence of the labrum and structural differences in the antennules, labrum, paraocular process, thoracopods, and telson lend support for the erection of several new genera as opposed to the single Hansenocaris. The data presented here emphasize the morphological limits of the genus Hansenocaris and the "bauplan" of cyprydiform larvae of Facetotecta. Although the optimum pathway is a joint analysis of both molecular and morphological characters, we use the morphological characters of y-cyprids to align them cladistically and determine the limits of the genus Hansenocaris s.s. and describe common characters for all y-cyprids including six pairs of the lattice organs instead five pairs considered as a ground pattern for all Thecostraca. We also determine plesiomorphic and apomorphic characters of all known y-cyprids and separate them from other thecostracan cypridiform larvae.

6.
Sci Rep ; 12(1): 9973, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705661

RESUMO

High-throughput sequencing has enabled genome skimming approaches to produce complete mitochondrial genomes (mitogenomes) for species identification and phylogenomics purposes. In particular, the portable sequencing device from Oxford Nanopore Technologies (ONT) has the potential to facilitate hands-on training from sampling to sequencing and interpretation of mitogenomes. In this study, we present the results from sampling and sequencing of six gastropod mitogenomes (Aplysia argus, Cellana orientalis, Cellana toreuma, Conus ebraeus, Conus miles and Tylothais aculeata) from a graduate level biodiversity course. The students were able to produce mitogenomes from sampling to annotation using existing protocols and programs. Approximately 4 Gb of sequence was produced from 16 Flongle and one MinION flow cells, averaging 235 Mb and N50 = 4.4 kb per flow cell. Five of the six 14.1-18 kb mitogenomes were circlised containing all 13 core protein coding genes. Additional Illumina sequencing revealed that the ONT assemblies spanned over highly AT rich sequences in the control region that were otherwise missing in Illumina-assembled mitogenomes, but still contained a base error of one every 70.8-346.7 bp under the fast mode basecalling with the majority occurring at homopolymer regions. Our findings suggest that the portable MinION device can be used to rapidly produce low-cost mitogenomes onsite and tailored to genomics-based training in biodiversity research.


Assuntos
Gastrópodes , Genoma Mitocondrial , Sequenciamento por Nanoporos , Nanoporos , Animais , Biodiversidade , Currículo , Gastrópodes/genética , Genoma Mitocondrial/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Análise de Sequência de DNA/métodos
7.
Gigascience ; 112022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35277961

RESUMO

BACKGROUND: The barnacles are a group of >2,000 species that have fascinated biologists, including Darwin, for centuries. Their lifestyles are extremely diverse, from free-swimming larvae to sessile adults, and even root-like endoparasites. Barnacles also cause hundreds of millions of dollars of losses annually due to biofouling. However, genomic resources for crustaceans, and barnacles in particular, are lacking. RESULTS: Using 62× Pacific Biosciences coverage, 189× Illumina whole-genome sequencing coverage, 203× HiC coverage, and 69× CHi-C coverage, we produced a chromosome-level genome assembly of the gooseneck barnacle Pollicipes pollicipes. The P. pollicipes genome is 770 Mb long and its assembly is one of the most contiguous and complete crustacean genomes available, with a scaffold N50 of 47 Mb and 90.5% of the BUSCO Arthropoda gene set. Using the genome annotation produced here along with transcriptomes of 13 other barnacle species, we completed phylogenomic analyses on a nearly 2 million amino acid alignment. Contrary to previous studies, our phylogenies suggest that the Pollicipedomorpha is monophyletic and sister to the Balanomorpha, which alters our understanding of barnacle larval evolution and suggests homoplasy in a number of naupliar characters. We also compared transcriptomes of P. pollicipes nauplius larvae and adults and found that nearly one-half of the genes in the genome are differentially expressed, highlighting the vastly different transcriptomes of larvae and adult gooseneck barnacles. Annotation of the genes with KEGG and GO terms reveals that these stages exhibit many differences including cuticle binding, chitin binding, microtubule motor activity, and membrane adhesion. CONCLUSION: This study provides high-quality genomic resources for a key group of crustaceans. This is especially valuable given the roles P. pollicipes plays in European fisheries, as a sentinel species for coastal ecosystems, and as a model for studying barnacle adhesion as well as its key position in the barnacle tree of life. A combination of genomic, phylogenetic, and transcriptomic analyses here provides valuable insights into the evolution and development of barnacles.


Assuntos
Thoracica , Animais , Cromossomos , Ecossistema , Filogenia , Thoracica/genética , Thoracica/metabolismo , Transcriptoma
8.
Evolution ; 76(1): 139-157, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34705275

RESUMO

The invasion of novel habitats is recognized as a major promotor of adaptive trait evolution in animals. We tested whether similar ecological niches entail independent and adaptive evolution of key phenotypic structures related to larval host invasion in distantly related taxa. We use disparately related clades of coral barnacles as our model system (Acrothoracica: Berndtia and Thoracicalcarea: Pyrgomatidae). We analyze the larval antennular phenotypes and functional morphologies facilitating host invasion. Extensive video recordings show that coral host invasion is carried out exclusively by cypris larvae with spear-shaped antennules. These first exercise a series of complex probing behaviors followed by repeated antennular penetration of the soft host tissues, which subsequently facilitates permanent invasion. Phylogenetic mapping of larval form and function related to niche invasion in 99 species of barnacles (Thecostraca) compellingly shows that the spear phenotype is uniquely associated with corals and penetrative behaviors. These features evolved independently in the two coral barnacle clades and from ancestors with fundamentally different antennular phenotypes. The larval host invasion system in coral barnacles likely evolved adaptively across millions of years for overcoming challenges associated with invading and entering demanding coral hosts.


Assuntos
Antozoários , Thoracica , Animais , Antozoários/genética , Recifes de Corais , Larva , Fenótipo , Filogenia , Simbiose , Thoracica/genética
9.
Proc Biol Sci ; 288(1960): 20211620, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34610769

RESUMO

Movement is a fundamental characteristic of life, yet some invertebrate taxa, such as barnacles, permanently affix to a substratum as adults. Adult barnacles became 'sessile' over 500 Ma; however, we confirm that the epizoic sea turtle barnacle, Chelonibia testudinaria, has evolved the capacity for self-directed locomotion as adults. We also assess how these movements are affected by water currents and the distance between conspecifics. Finally, we microscopically examine the barnacle cement. Chelonibia testudinaria moved distances up to 78.6 mm yr-1 on loggerhead and green sea turtle hosts. Movements on live hosts and on acrylic panels occasionally involved abrupt course alterations of up to 90°. Our findings showed that barnacles tended to move directly against water flow and independent of nearby conspecifics. This suggests that these movements are not passively driven by external forces and instead are behaviourally directed. In addition, it indicates that these movements function primarily to facilitate feeding, not reproduction. While the mechanism enabling movement remained elusive, we observed that trails of cement bore signs of multi-layered, episodic secretion. We speculate that proximal causes of movement involve one or a combination of rapid shell growth, cement secretion coordinated with basal membrane lifting, and directed contraction of basal perimeter muscles.


Assuntos
Thoracica , Tartarugas , Animais , Locomoção , Reprodução
10.
Proc Biol Sci ; 287(1927): 20200300, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32396804

RESUMO

Symbiotic relations and range of host usage are prominent in coral reefs and crucial to the stability of such systems. In order to explain how symbiotic relations are established and evolve, we used sponge-associated barnacles to ask three questions. (1) Does larval settlement on sponge hosts require novel adaptations facilitating symbiosis? (2) How do larvae settle and start life on their hosts? (3) How has this remarkable symbiotic lifestyle involving many barnacle species evolved? We found that the larvae (cyprids) of sponge-associated barnacles show a remarkably high level of interspecific variation compared with other barnacles. We document that variation in larval attachment devices are specifically related to properties of the surface on which they attach and metamorphose. Mapping of the larval and sponge surface features onto a molecular-based phylogeny showed that sponge symbiosis evolved separately at least three times within barnacles, with the same adaptive features being found in all larvae irrespective of phylogenetic relatedness. Furthermore, the metamorphosis of two species proceeded very differently, with one species remaining superficially on the host and developing a set of white calcareous structures, the other embedding itself into the live host tissue almost immediately after settlement. We argue that such a high degree of evolutionary flexibility of barnacle larvae played an important role in the successful evolution of complex symbiotic relationships in both coral reefs and other marine systems.


Assuntos
Recifes de Corais , Poríferos/fisiologia , Thoracica/fisiologia , Animais , Larva , Metamorfose Biológica , Filogenia , Simbiose
11.
J Morphol ; 280(8): 1222-1231, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31313378

RESUMO

Facetotecta, or crustacean "y-larvae," occur in all the world's oceans although the adult forms remain completely unknown. At the metamorphic molt from the last naupliar instar to the terminal cypris larval stage a free carapace, six pairs of natatory thoracopods, and a segmented thorax and abdomen all develop anew. Unlike in earlier molts, the cephalic shield and the so-called "faciotruncal integument" usually remain together at this last naupliar molt, and the posterior "trunk" portion of the exuviae, while hollow, is not empty. In mounted preparations examined by phase contrast or differential interference contrast (DIC) microscopy, a ghost-like image of part of the cypris thorax, particularly the thoracopods and even their setae, is commonly visible inside the naupliar exuviae, and may be universally present in the Facetotecta. To investigate this "ghost," we used DIC and digital photographic stacking, and also scanning electron microscopy, on slide or stub-mounted final naupliar exuviae of an assortment of undescribed species of Facetotecta that had been reared from planktonic lecithotropic nauplii to the cypris stage at Sesoko Island, Okinawa, Japan, and at Keelung and Green Island, Taiwan. These techniques showed that the "ghost" is a delicate, three-dimensional, fibrous structure, essentially a sling-like mold or matrix with struts attached to the outer cuticle and pairs of deep pockets that previously held the thoracopods of the developing cypris y. Whether it is endoskeletal in nature, the (partial) exuvia of an additional instar, remnants of apoptosis, or something else is currently unknown. Nothing similar has been reported in other thecostracans, or in other crustaceans that undergo a similarly abrupt metamorphosis at the last naupliar molt.


Assuntos
Crustáceos/anatomia & histologia , Animais , Crustáceos/ultraestrutura , Larva/anatomia & histologia , Larva/ultraestrutura , Muda
12.
PLoS One ; 13(2): e0191963, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29466363

RESUMO

Androdioecy (co-existence of hermaphrodites and dwarf males) is a fascinating yet poorly understood phenomenon. The pedunculated barnacle Scalpellum scalpellum is an emerging model species for the system. In S. scalpellum, dwarf males and hermaphrodites are very different in adult morphology (e.g., in feeding structures and reproductive organs), but they share the same larval development with nauplii followed by cypris larvae. Recently, it was found that S. scalpellum cypris larvae display both genetic and environmental sex determination, but no detailed morphological study has yet investigated how the settled cypris larvae differ subsequent to settlement. This study investigates the morphological aspects of the onset of sex determination in the cyprids of S. scalpellum by examining their metamorphosis into either dwarf males or hermaphrodites under laboratory conditions. This study emphasizes morphological differences, such as size and shape of primordial shell plates, development of a flexible peduncle and of thoracopods. It was shown that the cypris larvae start to differ already one day after settlement on either a hydroid (leading to hermaphrodites) or an adult hermaphrodite (leading to dwarf males). Dwarf males gradually developed an ovoid body shape and two pairs of circular scutal and tergal primordia. Such cyprids developed neither a carina nor any peduncle or cirri for feeding. The study concludes that the dwarf males of S. scalpellum are not just hermaphrodites arrested early in development. This entails that dwarf males constitute their own separate developmental pathways and points to S. scalpellum dwarf males being more specialized than previously stated. Finally, the study compares differences in dwarf male morphology between S. scalpellum with two other androdioecious species with less specialized dwarf males and use this to discuss evolutionary implications for the adaptive evolution of dwarf males across the Cirripedia.


Assuntos
Larva/crescimento & desenvolvimento , Thoracica/anatomia & histologia , Animais , Masculino , Metamorfose Biológica , Thoracica/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA