Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Extremophiles ; 28(2): 26, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683238

RESUMO

Extremophiles and their products have been a major focus of research interest for over 40 years. Through this period, studies of these organisms have contributed hugely to many aspects of the fundamental and applied sciences, and to wider and more philosophical issues such as the origins of life and astrobiology. Our understanding of the cellular adaptations to extreme conditions (such as acid, temperature, pressure and more), of the mechanisms underpinning the stability of macromolecules, and of the subtleties, complexities and limits of fundamental biochemical processes has been informed by research on extremophiles. Extremophiles have also contributed numerous products and processes to the many fields of biotechnology, from diagnostics to bioremediation. Yet, after 40 years of dedicated research, there remains much to be discovered in this field. Fortunately, extremophiles remain an active and vibrant area of research. In the third decade of the twenty-first century, with decreasing global resources and a steadily increasing human population, the world's attention has turned with increasing urgency to issues of sustainability. These global concerns were encapsulated and formalized by the United Nations with the adoption of the 2030 Agenda for Sustainable Development and the presentation of the seventeen Sustainable Development Goals (SDGs) in 2015. In the run-up to 2030, we consider the contributions that extremophiles have made, and will in the future make, to the SDGs.


Assuntos
Extremófilos , Extremófilos/metabolismo , Extremófilos/fisiologia , Desenvolvimento Sustentável , Adaptação Fisiológica , Ambientes Extremos , Biotecnologia
2.
J Control Release ; 307: 342-354, 2019 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-31228473

RESUMO

Virus-like particles (VLPs), i.e. molecular assemblies that resemble the geometry and organization of viruses, are promising platforms for therapeutics and imaging. Understanding the assembly and cellular uptake pathways of VLPs can contribute to the development of new antiviral drugs and new virus-based materials for the delivery of drugs or nucleic acid-based therapies. Here we report the assembly of capsid proteins of the cowpea chlorotic mottle virus (CCMV) around DNA into defined structures at neutral pH. Depending on the type of DNA used, we are able to create spherical structures of various diameters and rods of various lengths. In order to determine the shape dependency, the cellular uptake routes and intracellular positioning of these formed polymorphic VLPs in RAW264.7, HeLa and HEK 293 cells are evaluated using flow cytometry analysis with specific chemical inhibitors for different uptake routes. We observed particular uptake routes for the various CCMV-based nanostructures, but the experiments point to clathrin-mediated endocytosis as the major route for cell entry for the studied VLPs. Confocal microscopy reveals that the formed VLPs enter the cells, with clear colocalization in the endosomes. The obtained results provide insight in the cargo dependent VLP morphology and increase the understanding of shape dependent uptake into cells, which is relevant in the design of new virus-based structures with applications in drug and gene delivery.


Assuntos
Bromovirus , Proteínas do Capsídeo/administração & dosagem , DNA/administração & dosagem , Nanoestruturas/administração & dosagem , Animais , Clorpromazina/administração & dosagem , Citocalasina D/administração & dosagem , Endocitose , Células HEK293 , Células HeLa , Humanos , Camundongos , Células RAW 264.7
3.
J Appl Microbiol ; 124(2): 503-510, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29240974

RESUMO

AIMS: Optimizing D-xylose transport in Saccharomyces cerevisiae is essential for efficient bioethanol production from cellulosic materials. We have used a gene shuffling approach of hexose (Hxt) transporters in order to increase the affinity for D-xylose. METHODS AND RESULTS: Various libraries were transformed to a hexose transporter deletion strain, and shuffled genes were selected via growth on low concentrations of D-xylose. This screening yielded two homologous fusion proteins (fusions 9,4 and 9,6), both consisting of the major central part of Hxt2 and various smaller parts of other Hxt proteins. Both chimeric proteins showed the same increase in D-xylose affinity (8·1 ± 3·0 mmol l-1 ) compared with Hxt2 (23·7 ± 2·1 mmol l-1 ). The increased D-xylose affinity could be related to the C terminus, more specifically to a cysteine to proline mutation at position 505 in Hxt2. CONCLUSIONS: The Hxt2C505P mutation increased the affinity for D-xylose for Hxt2, thus providing a way to increase D-xylose transport flux at low D-xylose concentration. SIGNIFICANCE AND IMPACT OF THE STUDY: The gene shuffling protocol using the highly homologues hexose transporters family provides a powerful tool to enhance the D-xylose affinity of Hxt transporters in S. cerevisiae, thus providing a means to increase the D-xylose uptake flux at low D-xylose concentrations.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo , Transporte Biológico , Embaralhamento de DNA , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mutação de Sentido Incorreto , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
ACS Synth Biol ; 5(7): 754-64, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27072635

RESUMO

CRISPR/Cas9 based systems have emerged as versatile platforms for precision genome editing in a wide range of organisms. Here we have developed powerful CRISPR/Cas9 tools for marker-based and marker-free genome modifications in Penicillium chrysogenum, a model filamentous fungus and industrially relevant cell factory. The developed CRISPR/Cas9 toolbox is highly flexible and allows editing of new targets with minimal cloning efforts. The Cas9 protein and the sgRNA can be either delivered during transformation, as preassembled CRISPR-Cas9 ribonucleoproteins (RNPs) or expressed from an AMA1 based plasmid within the cell. The direct delivery of the Cas9 protein with in vitro synthesized sgRNA to the cells allows for a transient method for genome engineering that may rapidly be applicable for other filamentous fungi. The expression of Cas9 from an AMA1 based vector was shown to be highly efficient for marker-free gene deletions.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Penicillium chrysogenum/genética , Proteínas de Bactérias/genética , Proteína 9 Associada à CRISPR , Reparo do DNA , Endonucleases/genética , Deleção de Genes , Marcação de Genes/métodos , Marcadores Genéticos , Vetores Genéticos , Genoma Fúngico , Oligonucleotídeos/genética , RNA Guia de Cinetoplastídeos
5.
J Appl Microbiol ; 119(1): 99-111, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25882005

RESUMO

AIMS: Saccharomyces cerevisiae does not express any xylose-specific transporters. To enhance the xylose uptake of S. cerevisiae, directed evolution of the Gal2 transporter was performed. METHODS AND RESULTS: Three rounds of error-prone PCR were used to generate mutants with improved xylose-transport characteristics. After developing a fast and reliable high-throughput screening assay based on flow cytometry, eight mutants were obtained showing an improved uptake of xylose compared to wild-type Gal2 out of 41 200 single yeast cells. Gal2 variant 2·1 harbouring five amino acid substitutions showed an increased affinity towards xylose with a faster overall sugar metabolism of glucose and xylose. Another Gal2 variant 3·1 carrying an additional amino acid substitution revealed an impaired growth on glucose but not on xylose. CONCLUSIONS: Random mutagenesis of the S. cerevisiae Gal2 led to an increased xylose uptake capacity and decreased glucose affinity, allowing improved co-consumption. SIGNIFICANCE AND IMPACT OF THE STUDY: Random mutagenesis is a powerful tool to evolve sugar transporters like Gal2 towards co-consumption of new substrates. Using a high-throughput screening system based on flow-through cytometry, various mutants were identified with improved xylose-transport characteristics. The Gal2 variants in this work are a promising starting point for further engineering to improve xylose uptake from mixed sugars in biomass.


Assuntos
Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimologia , Xilose/metabolismo , Transporte Biológico , Evolução Molecular Direcionada , Glucose/metabolismo , Ensaios de Triagem em Larga Escala , Proteínas de Transporte de Monossacarídeos/metabolismo , Mutagênese , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Chem Sci ; 6(6): 3593-3598, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29511521

RESUMO

Bacteria use a communication system, called quorum sensing (QS), to organize into communities and synchronize gene expression to promote virulence and secure survival. Here we report on a proof-of-principle for externally interfering with this bacterial communication system, using light. By employing photoswitchable small molecules, we were able to photocontrol the QS-related bioluminescence in an Escherichia coli reporter strain, and the expression of target QS genes and pyocyanin production in Pseudomonas aeruginosa.

7.
Fungal Genet Biol ; 48(8): 831-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21549851

RESUMO

Penicillium chrysogenum is widely used as an industrial antibiotic producer, in particular in the synthesis of ß-lactam antibiotics such as penicillins and cephalosporins. In industrial processes, oxalic acid formation leads to reduced product yields. Moreover, precipitation of calcium oxalate complicates product recovery. We observed oxalate production in glucose-limited chemostat cultures of P. chrysogenum grown with or without addition of adipic acid, side-chain of the cephalosporin precursor adipoyl-6-aminopenicillinic acid (ad-6-APA). Oxalate accounted for up to 5% of the consumed carbon source. In filamentous fungi, oxaloacetate hydrolase (OAH; EC3.7.1.1) is generally responsible for oxalate production. The P. chrysogenum genome harbours four orthologs of the A. niger oahA gene. Chemostat-based transcriptome analyses revealed a significant correlation between extracellular oxalate titers and expression level of the genes Pc18g05100 and Pc22g24830. To assess their possible involvement in oxalate production, both genes were cloned in Saccharomyces cerevisiae, yeast that does not produce oxalate. Only the expression of Pc22g24830 led to production of oxalic acid in S. cerevisiae. Subsequent deletion of Pc22g28430 in P. chrysogenum led to complete elimination of oxalate production, whilst improving yields of the cephalosporin precursor ad-6-APA.


Assuntos
Hidrolases/genética , Hidrolases/metabolismo , Oxalatos/metabolismo , Penicillium chrysogenum/metabolismo , beta-Lactamas/metabolismo , Meios de Cultura , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Engenharia Genética/métodos , Microbiologia Industrial/métodos , Penicillium chrysogenum/enzimologia , Penicillium chrysogenum/genética , Penicillium chrysogenum/crescimento & desenvolvimento
8.
Appl Environ Microbiol ; 72(1): 102-11, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16391031

RESUMO

Many systems are available for the production of recombinant proteins in bacterial and eukaryotic model organisms, which allow us to study proteins in their native hosts and to identify protein-protein interaction partners. In contrast, only a few transformation systems have been developed for archaea, and no system for high-level gene expression existed for hyperthermophilic organisms. Recently, a virus-based shuttle vector with a reporter gene was developed for the crenarchaeote Sulfolobus solfataricus, a model organism of hyperthermophilic archaea that grows optimally at 80 degrees C (M. Jonuscheit, E. Martusewitsch, K. M. Stedman, and C. Schleper, Mol. Microbiol. 48:1241-1252, 2003). Here we have refined this system for high-level gene expression in S. solfataricus with the help of two different promoters, the heat-inducible promoter of the major chaperonin, thermophilic factor 55, and the arabinose-inducible promoter of the arabinose-binding protein AraS. Functional expression of heterologous and homologous genes was demonstrated, including production of the cytoplasmic sulfur oxygenase reductase from Acidianus ambivalens, an Fe-S protein of the ABC class from S. solfataricus, and two membrane-associated ATPases potentially involved in the secretion of proteins. Single-step purification of the proteins was obtained via fused His or Strep tags. To our knowledge, these are the first examples of the application of an expression vector system to produce large amounts of recombinant and also tagged proteins in a hyperthermophilic archaeon.


Assuntos
Proteínas Arqueais/metabolismo , Vetores Genéticos , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Proteínas Recombinantes/metabolismo , Sulfolobus solfataricus/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas Arqueais/genética , Regulação da Expressão Gênica em Archaea , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Sulfolobus solfataricus/genética
9.
Cell Mol Life Sci ; 61(19-20): 2646-57, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15526169

RESUMO

LmrP from Lactococcus lactis is a 45-kDa membrane protein that confers resistance to a wide variety of lipophilic compounds by acting as a proton motive force-driven efflux pump. This study shows that both the proton motive force and ligand interaction alter the accessibility of cytosolic tryptophan residues to a hydrophilic quencher. The proton motive force mediates an increase of LmrP accessibility toward the external medium and results in higher drug binding. Residues Asp128 and Asp68, from cytosolic loops, are involved in the proton motive force-mediated accessibility change. Ligand binding does not modify the protein accessibility, but the proton motive force-mediated restructuring is prerequisite for a subsequent accessibility change mediated by ligand binding. Asp142 cooperates with other membrane-embedded carboxylic residues to promote a conformational change that increases LmrP accessibility toward the hydrophilic quencher. This drug binding-mediated reorganization may be related to the transition between the high- and low-affinity drug-binding sites and is crucial for drug release in the extracellular medium.


Assuntos
Proteínas de Bactérias/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Acrilamida/farmacologia , Ácido Aspártico/química , Proteínas de Bactérias/química , Benzimidazóis/farmacologia , Transporte Biológico , Membrana Celular/metabolismo , Citosol/química , Relação Dose-Resposta a Droga , Resistência a Múltiplos Medicamentos , Concentração de Íons de Hidrogênio , Lactococcus lactis/metabolismo , Ligantes , Lipossomos/metabolismo , Proteínas de Membrana Transportadoras/química , Ligação Proteica , Estrutura Terciária de Proteína , Proteolipídeos/química , Prótons , Sefarose/química , Espectroscopia de Infravermelho com Transformada de Fourier , Tetraciclina/química , Fatores de Tempo , Triptofano/química
10.
Adv Biochem Eng Biotechnol ; 88: 111-35, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15719554

RESUMO

Classical strain improvement of beta-lactam producing organisms by random mutagenesis has been a powerful tool during the last century. Current insights in the biochemistry and genetics of beta-lactam production, in particular in the filamentous fungus Penicillium chrysogenum, however, make a more directed and rational approach of metabolic pathway engineering possible. Besides the need for efficient genetic methods, a thorough understanding is needed of the metabolic fluxes in primary, intermediary and secondary metabolism. Controlling metabolic fluxes can be achieved by adjusting enzyme activities and metabolite levels in such a way that the main flow is directed towards the desired product. In addition, compartmentalization of specific parts of the beta-lactam biosynthesis pathways provides a way to control this pathway by clustering enzymes with their substrates inside specific membrane bound structures sequestered from the cytosol. This compartmentalization also requires specific membrane transport steps of which the details are currently uncovered.


Assuntos
Acremonium/metabolismo , Transporte Biológico Ativo/fisiologia , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Melhoramento Genético/métodos , Fatores de Transcrição/metabolismo , beta-Lactamas/metabolismo , Acremonium/classificação , Acremonium/genética , Antibacterianos/biossíntese , Antibacterianos/química , Antibacterianos/classificação , Proteínas Fúngicas/genética , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Transdução de Sinais/fisiologia , Especificidade da Espécie , Fatores de Transcrição/genética , beta-Lactamas/química
11.
Cell Mol Life Sci ; 60(10): 2034-52, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14618254

RESUMO

The major route of protein translocation in bacteria is the so-called general secretion pathway (Sec-pathway). This route has been extensively studied in Escherichia coli and other bacteria. The movement of preproteins across the cytoplasmic membrane is mediated by a multimeric membrane protein complex called translocase. The core of the translocase consists of a proteinaceous channel formed by an oligomeric assembly of the heterotrimeric membrane protein complex SecYEG and the peripheral adenosine triphosphatase (ATPase) SecA as molecular motor. Many secretory proteins utilize the molecular chaperone SecB for targeting and stabilization of the unfolded state prior to translocation, while most nascent inner membrane proteins are targeted to the translocase by the signal recognition particle and its membrane receptor. Translocation is driven by ATP hydrolysis and the proton motive force. In the last decade, genetic and biochemical studies have provided detailed insights into the mechanism of preprotein translocation. Recent crystallographic studies on SecA, SecB and the SecYEG complex now provide knowledge about the structural features of the translocation process. Here, we will discuss the mechanistic and structural basis of the translocation of proteins across and the integration of membrane proteins into the cytoplasmic membrane.


Assuntos
Adenosina Trifosfatases/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Transporte Proteico/fisiologia , Canais de Translocação SEC , Proteínas SecA
12.
Proc Natl Acad Sci U S A ; 100(10): 5801-6, 2003 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-12724529

RESUMO

The Escherichia coli inner membrane protein (IMP) YidC is involved in the membrane integration of IMPs both in concert with and independently from the Sec translocase. YidC seems to be dispensable for the assembly of Sec-dependent IMPs, and so far it has been shown to be essential only for the proper Sec-independent integration of some phage coat proteins. Here, we studied the physiological consequences of YidC depletion in an effort to understand the essential function of YidC. The loss of YidC rapidly and specifically induced the Psp stress response, which is accompanied by a reduction of the proton-motive force. This reduction is due to defects in the functional assembly of cytochrome o oxidase and the F(1)F(o) ATPase complex, which is reminiscent of the effects of mutations in the yidC homologue OXA1 in the yeast mitochondrial inner membrane. The integration of CyoA (subunit II of the cytochrome o oxidase) and F(o)c (membrane subunit of the F(1)F(o) ATPase) appeared exceptionally sensitive to depletion of YidC, suggesting that these IMPs are natural substrates of a membrane integration and assembly pathway in which YidC plays an exclusive or at least a pivotal role.


Assuntos
Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Proteínas de Escherichia coli/biossíntese , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/biossíntese , Consumo de Oxigênio/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Cinética , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Canais de Translocação SEC
13.
FEBS Lett ; 508(1): 103-6, 2001 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-11707277

RESUMO

SecDFyajC of Escherichia coli is required for efficient export of proteins in vivo. However, the functional role of SecDFyajC in protein translocation is unclear. We evaluated the postulated function of SecDFyajC in the maintenance of the proton motive force. As previously reported, inner membrane vesicles (IMVs) lacking SecDFyajC are defective in the generation of a stable proton motive force when energized with succinate. This phenomenon is, however, not observed when NADH is used as an electron donor. Moreover, the proton motive force generated in SecDFyajC-depleted vesicles stimulated translocation to the same extent as seen with IMVs containing SecDFyajC. Further analysis demonstrates that the reduced proton motive force with succinate in IMVs lacking SecDFyajC is due to a lower amount of the enzyme succinate dehydrogenase. The expression of this enzyme complex is repressed by growth on glucose media, the condition used to deplete SecDFyajC. These results demonstrate that SecDFyajC is not required for proton motive force-driven protein translocation.


Assuntos
Antígenos de Bactérias , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras , Transporte Proteico , Força Próton-Motriz , Proteínas de Bactérias/química , Escherichia coli/enzimologia , Escherichia coli/genética , Substâncias Macromoleculares , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Precursores de Proteínas/metabolismo , Succinato Desidrogenase/metabolismo , Vesículas Transportadoras/química , Vesículas Transportadoras/metabolismo
14.
Extremophiles ; 5(5): 285-94, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11699642

RESUMO

The ion and particularly the proton and sodium ion permeabilities of cytoplasmic membranes play crucial roles in the bioenergetics of microorganisms. The proton and sodium permeabilities of membranes increase with temperature. Psychrophilic and mesophilic bacteria and mesophilic, (hyper)thermophilic, and halophilic archaea are capable of adjusting the lipid composition of their membranes in such a way that the proton permeability at the respective growth temperature remains constant (homeoproton permeability). Thermophilic bacteria are an exception. They rely on the less permeable sodium ions to generate a sodium motive force, which is subsequently used to drive energy-requiring membrane-bound processes. Transport of solutes across bacterial and archaeal membranes is mainly catalyzed by primary ATP-driven transport systems or by proton- or sodium-motive-force-driven secondary transport systems. Unlike most bacteria, hyperthermophilic bacteria and archaea prefer primary uptake systems. Several high-affinity ATP-binding cassette (ABC) transporters for sugars from hyperthermophiles have been identified and characterized. The activities of these ABC transporters allow these organisms to thrive in their nutrient-poor environments.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Metabolismo Energético , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Transporte Biológico Ativo , Proteínas de Transporte/metabolismo , Permeabilidade da Membrana Celular , Meio Ambiente , Concentração de Íons de Hidrogênio , Temperatura
15.
Nat Struct Biol ; 8(12): 1074-82, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11713477

RESUMO

Proteins imported into the mitochondrial matrix are synthesized in the cytosol with an N-terminal presequence and are translocated through hetero-oligomeric translocase complexes of the outer and inner mitochondrial membranes. The channel across the inner membrane is formed by the presequence translocase, which consists of roughly six distinct subunits; however, it is not known which subunits actually form the channel. Here we report that purified Tim23 forms a hydrophilic, approximately 13-24 A wide channel characteristic of the mitochondrial presequence translocase. The Tim23 channel is cation selective and activated by a membrane potential and presequences. The channel is formed by the C-terminal domain of Tim23 alone, whereas the N-terminal domain is required for selectivity and a high-affinity presequence interaction. Thus, Tim23 forms a voltage-sensitive high-conductance channel with specificity for mitochondrial presequences.


Assuntos
Ativação do Canal Iônico , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/química , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Precursores de Proteínas/metabolismo , Sinais Direcionadores de Proteínas/fisiologia , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Eletrofisiologia , Membranas Intracelulares/química , Membranas Intracelulares/enzimologia , Membranas Intracelulares/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Substâncias Macromoleculares , Potenciais da Membrana , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Mitocôndrias/enzimologia , Mitocôndrias/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Mutação/genética , Permeabilidade , Ligação Proteica , Precursores de Proteínas/química , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas , Transporte Proteico , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato
16.
FEBS Lett ; 506(1): 6-10, 2001 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-11591361

RESUMO

Bacteria and archaea usually divide symmetrically by formation of a septum in the middle of the cell. A key event in cell division is the assembly of the FtsZ ring. FtsZ is the prokaryotic homolog of tubulin and forms polymers in the presence of guanine nucleotides. Here, we specifically address the polymerization of FtsZ and the role of nucleotide hydrolysis in polymer formation and stabilization. Recent structural and biochemical results are discussed and a model for FtsZ polymerization, similar to that for tubulin, is presented.


Assuntos
Proteínas de Bactérias/fisiologia , Proteínas do Citoesqueleto , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biopolímeros , Guanosina Trifosfato/metabolismo , Hidrólise , Modelos Moleculares , Conformação Proteica , Tubulina (Proteína)/química
17.
J Bacteriol ; 183(17): 4979-84, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11489849

RESUMO

The hyperthermophilic archaeon Pyrococcus furiosus can utilize different beta-glucosides, like cellobiose and laminarin. Cellobiose uptake occurs with high affinity (K(m) = 175 nM) and involves an inducible binding protein-dependent transport system. The cellobiose binding protein (CbtA) was purified from P. furiosus membranes to homogeneity as a 70-kDa glycoprotein. CbtA not only binds cellobiose but also cellotriose, cellotetraose, cellopentaose, laminaribiose, laminaritriose, and sophorose. The cbtA gene was cloned and functionally expressed in Escherichia coli. cbtA belongs to a gene cluster that encodes a transporter that belongs to the Opp family of ABC transporters.


Assuntos
Transportadores de Cassetes de Ligação de ATP/isolamento & purificação , Transportadores de Cassetes de Ligação de ATP/metabolismo , Celobiose/metabolismo , Pyrococcus/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Escherichia coli , Cinética , Peso Molecular
18.
FEMS Microbiol Rev ; 25(4): 437-54, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11524133

RESUMO

In contrast to Gram-negative bacteria, secretory proteins of Gram-positive bacteria only need to traverse a single membrane to enter the extracellular environment. For this reason, Gram-positive bacteria (e.g. various Bacillus species) are often used in industry for the commercial production of extracellular proteins that can be produced in yields of several grams per liter culture medium. The central components of the main protein translocation system (Sec system) of Gram-negative and Gram-positive bacteria show a high degree of conservation, suggesting similar functions and working mechanisms. Despite this fact, several differences can be identified such as the absence of a clear homolog of the secretion-specific chaperone SecB in Gram-positive bacteria. The now available detailed insight into the organization of the Gram-positive protein secretion system and how it differs from the well-characterized system of Escherichia coli may in the future facilitate the exploitation of these organisms in the high level production of heterologous proteins which, so far, is sometimes very inefficient due to one or more bottlenecks in the secretion pathway. In this review, we summarize the current knowledge on the various steps of the protein secretion pathway of Gram-positive bacteria with emphasis on Bacillus subtilis, which during the last decade, has arisen as a model system for the study of protein secretion in this industrially important class of microorganisms.


Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Bactérias Gram-Positivas/citologia , Bactérias Gram-Positivas/metabolismo , Bacillus subtilis/citologia , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Transporte/metabolismo , Parede Celular/metabolismo , Bactérias Gram-Positivas/genética , Sinais Direcionadores de Proteínas/genética , Sinais Direcionadores de Proteínas/fisiologia , Transporte Proteico , Partícula de Reconhecimento de Sinal/metabolismo
19.
J Biol Chem ; 276(35): 32559-66, 2001 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-11445571

RESUMO

In Escherichia coli, the SecYEG complex mediates the translocation and membrane integration of proteins. Both genetic and biochemical data indicate interactions of several transmembrane segments (TMSs) of SecY with SecE. By means of cysteine scanning mutagenesis, we have identified intermolecular sites of contact between TMS7 of SecY and TMS3 of SecE. The cross-linking of SecY to SecE demonstrates that these subunits are present in a one-to-one stoichiometry within the SecYEG complex. Sites in TMS3 of SecE involved in SecE dimerization are confined to a specific alpha-helical interface and occur in an oligomeric SecYEG complex. Although cross-linking reversibly inactivates translocation, the contact between TMS7 of SecY and TMS3 of SecE remains unaltered upon insertion of the preprotein into the translocation channel. These data support a model for an oligomeric translocation channel in which pairs of SecYEG complexes contact each other via SecE.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cisteína , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Membrana Celular/metabolismo , Dimerização , Dissulfetos/análise , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína , Subunidades Proteicas , Transporte Proteico , Canais de Translocação SEC
20.
EMBO Rep ; 2(6): 519-23, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11415985

RESUMO

The inner membrane protein YidC is associated with the preprotein translocase of Escherichia coli and contacts transmembrane segments of nascent inner membrane proteins during membrane insertion. YidC was purified to homogeneity and co-reconstituted with the SecYEG complex. YidC had no effect on the SecA/SecYEG-mediated translocation of the secretory protein proOmpA; however, using a crosslinking approach, the transmembrane segment of nascent FtsQ was found to gain access to YidC via SecY. These data indicate the functional reconstitution of the initial stages of YidC-dependent membrane protein insertion via the SecYEG complex.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Membrana Celular/enzimologia , Membrana Celular/metabolismo , Códon , Reagentes de Ligações Cruzadas/farmacologia , Dimerização , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Plasmídeos/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Proteolipídeos/metabolismo , RNA Mensageiro/metabolismo , Canais de Translocação SEC , Proteínas SecA , Transcrição Gênica , Translocação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA