Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(26): 68129-68142, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37120501

RESUMO

Blast furnace slag-based geopolymer mortars strengthened with human hair fibers were synthesized in the present study. The mixture of NaOH and Na2SiO3 was used as activating solution. Zero percent, 0.25%, 0.5%, 0.75%, 1%, and 1.25% hair fibers were added by weight of slag. Several analytical approaches, including compressive strength, flexural strength, P-wave velocity, bulk density, porosity, water absorption, infrared spectroscopy, X-ray diffraction, and scanning electron microscopy, were used to assess the physicomechanical and microstructural characteristics of the geopolymer mortars. Overall, the results found revealed that the incorporation of human hair fibers into the slag-based geopolymer matrix brought about a noticeable improvement in the mechanical characteristics of the geopolymer mortars. Similarly, based on FTIR analysis, the geopolymer mortar is characterized by the presence of three principal bonds, namely, the stretching of Al-O, a shift of the absorption band of the Si-O-Si (Al), and the stretching of the O-C-O. Likewise, the mineralogical analysis shows that quartz and calcite are two crystalline phases dominant in the geopolymer matrix. In addition, SEM-EDS analysis shows a dense and continuous morphology devoid of microcracks with a few pores existing on the matrix surface with perfect integration of the hair fiber in the geopolymer matrix. According to these relevant properties, the synthesized geopolymers have potential applications as a suitable substitute for many Portland cement-based materials whose manufacture is energy-consuming and polluting.


Assuntos
Carbonato de Cálcio , Comércio , Humanos , Força Compressiva , Cabelo , Microscopia Eletrônica de Varredura
2.
Heliyon ; 8(3): e09087, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35846476

RESUMO

The exploitation of cost-effective, sustainable, green and efficient compounds is a renewed science and a demanding mission for today's chemists and technologists. In this view, the inhibitive corrosion properties of some hydrazine derivatives named (1E,2E)-bis(1-(2-nitrophenyl)ethylidene)hydrazine (SSBO), (1E,2E)-bis(1-(3-nitrophenyl)ethylidene)hydrazine (SSBM) and (1E,2E)-bis(1-(4-nitrophenyl)ethylidene)hydrazine (SSBP) on the C38 steel corrosion in 1M HCl media has been evaluated by different techniques like electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy. The EIS results showed that SSBM is the greatest inhibitor ( η > 93 %) among the three tested compounds. The SSBM gives considerable inhibition efficiency against corrosion of steel compared to the previous studies. The PDP curves indicated that the studied inhibitors were a mixed-type inhibitor with a predominantly cathodic control. Quantum calculations of some descriptors derived from the density functional theory (DFT), the transition state theory (TST), the quantum theory of atoms in molecules (QTAIM) and molecular dynamics simulation have delivered helpful information regarding electron transfer and mechanism during adsorption of inhibitors on C38 steel surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA