Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Vaccine ; 42(26): 126378, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39307023

RESUMO

During the COVID-19 pandemic, access to vaccines in low- and middle-income countries was limited and delayed. To address these disparities, the mRNA Technology Transfer Programme, coordinated and led by the World Health Organization and the Medicines Patent Pool, was launched. A consortium has been set up in South Africa to develop a platform for manufacturing mRNA vaccines. In this study, the preclinical evaluation of the mRNA COVID-19 vaccine candidate, AfriVac 2121 (Wuhan) manufactured in December 2022 was conducted. The hamster model was employed to assess the immunogenicity and efficacy of this COVID-19 mRNA vaccine candidate in comparison to a commercial mRNA vaccine (mRNA-1273, Moderna). Results revealed that a vaccine regimen consisting of two 5 µg doses of AfriVac 2121 (Wuhan) elicited a protective immune response against an ancestral B.1 strain of SARS-CoV-2 similar to that obtained with the mRNA-1273 vaccine. AfriVac 2121 (Wuhan) induced robust humoral immune responses against SARS-CoV-2 and protected hamsters against a SARS-CoV-2 challenge with the B.1 strain. These results have since enabled the further development of this platform for manufacturing mRNA vaccines.

2.
Biomed Pharmacother ; 177: 116988, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38897157

RESUMO

Therapeutic monoclonal antibodies have been successful in protecting vulnerable populations against SARS-CoV-2. However, their effectiveness has been hampered by the emergence of new variants. To adapt the therapeutic landscape, health authorities have based their recommendations mostly on in vitro neutralization tests. However, these do not provide a reliable understanding of the changes in the dose-effect relationship and how they may translate into clinical efficacy. Taking the example of EvusheldTM (AZD7442), we aimed to investigate how in vivo data can provide critical quantitative results and project clinical effectiveness. We used the Golden Syrian hamster model to estimate 90 % effective concentrations (EC90) of AZD7442 in vivo against SARS-CoV-2 Omicron BA.1, BA.2 and BA.5 variants. While our in vivo results confirmed the partial loss of AZD7442 activity for BA.1 and BA.2, they showed a much greater loss of efficacy against BA.5 than that obtained in vitro. We analyzed in vivo EC90s in perspective with antibody levels measured in a cohort of immunocompromised patients who received 300 mg of AZD7442. We found that a substantial proportion of patients had serum levels of anti-SARS-CoV-2 spike protein IgG above the estimated in vivo EC90 for BA.1 and BA.2 (21 % and 92 % after 1 month, respectively), but not for BA.5. These findings suggest that AZD7442 is likely to retain clinical efficacy against BA.2 and BA.1, but not against BA.5. Overall, the present study illustrates the importance of complementing in vitro investigations by preclinical studies in animal models to help predict the efficacy of monoclonal antibodies in humans.


Assuntos
Anticorpos Monoclonais , COVID-19 , Mesocricetus , SARS-CoV-2 , Animais , SARS-CoV-2/imunologia , SARS-CoV-2/efeitos dos fármacos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/imunologia , COVID-19/imunologia , COVID-19/virologia , Humanos , Cricetinae , Tratamento Farmacológico da COVID-19 , Feminino , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Masculino , Modelos Animais de Doenças , Betacoronavirus/imunologia , Betacoronavirus/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Antivirais/farmacologia , Antivirais/uso terapêutico
3.
Heliyon ; 10(10): e30862, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38803975

RESUMO

The SARS-CoV-2 pandemic has highlighted the need for broad-spectrum antiviral drugs to respond promptly to viral emergence. We conducted a preclinical study of molnupiravir (MOV) against SARS-CoV-2 to fully characterise its antiviral properties and mode of action. The antiviral activity of different concentrations of MOV was evaluated ex vivo on human airway epithelium (HAE) and in vivo in a hamster model at three escalating doses (150, 300 and 400 mg/kg/day) according to three different regimens (preventive, pre-emptive and curative). We assessed viral loads and infectious titres at the apical pole of HAE and in hamster lungs, and MOV trough concentration in plasma and lungs. To explore the mode of action of the MOV, the entire genomes of the collected viruses were deep-sequenced. MOV effectively reduced viral titres in HAE and in the lungs of treated animals. Early treatment after infection was a key factor in efficacy, probably associated with high lung concentrations of MOV, suggesting good accumulation in the lung. MOV induced genomic alteration in viral genomes with an increase in the number of minority variants, and predominant G to A transitions. The observed reduction in viral replication and its mechanism of action leading to lethal mutagenesis, supported by clinical trials showing antiviral action in humans, provide a convincing basis for further research as an additional means in the fight against COVID-19 and other RNA viruses.

4.
Emerg Microbes Infect ; 13(1): 2356140, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38742328

RESUMO

Reverse genetic systems are mainly used to rescue recombinant viral strains in cell culture. These tools have also been used to generate, by inoculating infectious clones, viral strains directly in living animals. We previously developed the "Infectious Subgenomic Amplicons" (ISA) method, which enables the rescue of single-stranded positive sense RNA viruses in vitro by transfecting overlapping subgenomic DNA fragments. Here, we provide proof-of-concept for direct in vivo generation of infectious particles following the inoculation of subgenomic amplicons. First, we rescued a strain of tick-borne encephalitis virus in mice to transpose the ISA method in vivo. Subgenomic DNA fragments were amplified using a 3-fragment reverse genetics system and inoculated intramuscularly. Almost all animals were infected when quantities of DNA inoculated were at least 20 µg. We then optimized our procedure in order to increase the animal infection rate. This was achieved by adding an electroporation step and/or using a simplified 2- fragment reverse genetics system. Under optimal conditions, a large majority of animals were infected with doses of 20 ng of DNA. Finally, we demonstrated the versatility of this method by applying it to Japanese encephalitis and Chikungunya viruses. This method provides an efficient strategy for in vivo rescue of arboviruses. Furthermore, in the context of the development of DNA-launched live attenuated vaccines, this new approach may facilitate the generation of attenuated strains in vivo. It also enables to deliver a substance free of any vector DNA, which seems to be an important criterion for the development of human vaccines.


Assuntos
Arbovírus , Vírus da Encefalite Transmitidos por Carrapatos , Genética Reversa , Animais , Camundongos , Vírus da Encefalite Transmitidos por Carrapatos/genética , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Genética Reversa/métodos , Arbovírus/genética , Vírus Chikungunya/genética , Vírus da Encefalite Japonesa (Espécie)/genética , DNA Viral/genética , Encefalite Transmitida por Carrapatos/virologia , Feminino , Genoma Viral , Febre de Chikungunya/virologia , Humanos
5.
Antiviral Res ; 222: 105814, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38272321

RESUMO

Since the start of the SARS-CoV-2 pandemic, the search for antiviral therapies has been at the forefront of medical research. To date, the 3CLpro inhibitor nirmatrelvir (Paxlovid®) has shown the best results in clinical trials and the greatest robustness against variants. A second SARS-CoV-2 protease inhibitor, ensitrelvir (Xocova®), has been developed. Ensitrelvir, currently in Phase 3, was approved in Japan under the emergency regulatory approval procedure in November 2022, and is available since March 31, 2023. One of the limitations for the use of antiviral monotherapies is the emergence of resistance mutations. Here, we experimentally generated mutants resistant to nirmatrelvir and ensitrelvir in vitro following repeating passages of SARS-CoV-2 in the presence of both antivirals. For both molecules, we demonstrated a loss of sensitivity for resistance mutants in vitro. Using a Syrian golden hamster infection model, we showed that the ensitrelvir M49L mutation, in the multi-passage strain, confers a high level of in vivo resistance. Finally, we identified a recent increase in the prevalence of M49L-carrying sequences, which appears to be associated with multiple repeated emergence events in Japan and may be related to the use of Xocova® in the country since November 2022. These results highlight the strategic importance of genetic monitoring of circulating SARS-CoV-2 strains to ensure that treatments administered retain their full effectiveness.


Assuntos
Anti-Infecciosos , COVID-19 , Animais , Cricetinae , Inibidores de Proteases/farmacologia , SARS-CoV-2/genética , Inibidores Enzimáticos , Antivirais/farmacologia , Mesocricetus
6.
Biomed Chromatogr ; 37(9): e5689, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37349975

RESUMO

Favipiravir, a broad-spectrum RNA-dependent RNA polymerase inhibitor, is currently being evaluated in preclinical and clinical studies for the treatment of various infectious diseases including COVID-19. We developed an ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) assay for the quantification of favipiravir and its hydroxide metabolite (M1), in human and hamster biological matrices. Analytes were separated on an Acquity UPLC HSS T3 column (2.1 × 100 mm, 1.8 µm) after a simple protein precipitation with acetonitrile. The mobile phase consisted of water and methanol, each containing 0.05% formic acid. Experiments were performed using electrospray ionization in the positive and negative ion mode, with protonated molecules used as the precursor ion and a total run time of 6 min. The MS/MS response was linear over the concentration ranges from 0.5-100 µg/ml for favipiravir and 0.25-30 µg/ml for M1. Intra- and inter-day accuracy and precision were within the recommended limits of the European Medicines Agency guidelines. No significant matrix effect was observed, and the method was successfully applied to inform favipiravir dose adjustments in six immunocompromised children with severe RNA viral infections. In conclusion, the UPLC-MS/MS assay is suitable for quantification of favipiravir over a wide range of dosing regimens, and can easily be adapted to other matrices and species.


Assuntos
COVID-19 , Espectrometria de Massas em Tandem , Criança , Humanos , Cricetinae , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Hidróxidos
7.
Antiviral Res ; 215: 105638, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37207822

RESUMO

The successive emergence of SARS-CoV-2 Omicron variants has completely changed the modalities of use of therapeutic monoclonal antibodies. Recent in vitro studies indicated that only Sotrovimab has maintained partial activity against BQ.1.1 and XBB.1. In the present study, we used the hamster model to determine whether Sotrovimab retains antiviral activity against these Omicron variants in vivo. Our results show that at exposures consistent with those observed in humans, Sotrovimab remains active against BQ.1.1 and XBB.1, although for BQ.1.1 the efficacy is lower than that observed against the first globally dominant Omicron sublineages BA.1 and BA.2.


Assuntos
COVID-19 , Animais , Cricetinae , Humanos , SARS-CoV-2 , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes , Anticorpos Antivirais
8.
Microorganisms ; 10(8)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36014057

RESUMO

In the absence of drugs to treat or prevent COVID-19, drug repurposing can be a valuable strategy. Despite a substantial number of clinical trials, drug repurposing did not deliver on its promise. While success was observed with some repurposed drugs (e.g., remdesivir, dexamethasone, tocilizumab, baricitinib), others failed to show clinical efficacy. One reason is the lack of clear translational processes based on adequate preclinical profiling before clinical evaluation. Combined with limitations of existing in vitro and in vivo models, there is a need for a systematic approach to urgent antiviral drug development in the context of a global pandemic. We implemented a methodology to test repurposed and experimental drugs to generate robust preclinical evidence for further clinical development. This translational drug development platform comprises in vitro, ex vivo, and in vivo models of SARS-CoV-2, along with pharmacokinetic modeling and simulation approaches to evaluate exposure levels in plasma and target organs. Here, we provide examples of identified repurposed antiviral drugs tested within our multidisciplinary collaboration to highlight lessons learned in urgent antiviral drug development during the COVID-19 pandemic. Our data confirm the importance of assessing in vitro and in vivo potency in multiple assays to boost the translatability of pre-clinical data. The value of pharmacokinetic modeling and simulations for compound prioritization is also discussed. We advocate the need for a standardized translational drug development platform for mild-to-moderate COVID-19 to generate preclinical evidence in support of clinical trials. We propose clear prerequisites for progression of drug candidates for repurposing into clinical trials. Further research is needed to gain a deeper understanding of the scope and limitations of the presented translational drug development platform.

9.
EBioMedicine ; 82: 104148, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35834886

RESUMO

BACKGROUND: To address the emergence of SARS-CoV-2, multiple clinical trials in humans were rapidly started, including those involving an oral treatment by nitazoxanide, despite no or limited pre-clinical evidence of antiviral efficacy. METHODS: In this work, we present a complete pre-clinical evaluation of the antiviral activity of nitazoxanide against SARS-CoV-2. FINDINGS: First, we confirmed the in vitro efficacy of nitazoxanide and tizoxanide (its active metabolite) against SARS-CoV-2. Then, we demonstrated nitazoxanide activity in a reconstructed bronchial human airway epithelium model. In a SARS-CoV-2 virus challenge model in hamsters, oral and intranasal treatment with nitazoxanide failed to impair viral replication in commonly affected organs. We hypothesized that this could be due to insufficient diffusion of the drug into organs of interest. Indeed, our pharmacokinetic study confirmed that concentrations of tizoxanide in organs of interest were always below the in vitro EC50. INTERPRETATION: These preclinical results suggest, if directly applicable to humans, that the standard formulation and dosage of nitazoxanide is not effective in providing antiviral therapy for Covid-19. FUNDING: This work was supported by the Fondation de France "call FLASH COVID-19", project TAMAC, by "Institut national de la santé et de la recherche médicale" through the REACTing (REsearch and ACTion targeting emerging infectious diseases), by REACTING/ANRS MIE under the agreement No. 21180 ('Activité des molécules antivirales dans le modèle hamster'), by European Virus Archive Global (EVA 213 GLOBAL) funded by the European Union's Horizon 2020 research and innovation program under grant agreement No. 871029 and DNDi under support by the Wellcome Trust Grant ref: 222489/Z/21/Z through the COVID-19 Therapeutics Accelerator".


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Cricetinae , Humanos , Nitrocompostos , Tiazóis
10.
Commun Biol ; 5(1): 225, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273335

RESUMO

Late 2020, SARS-CoV-2 Alpha variant emerged in United Kingdom and gradually replaced G614 strains initially involved in the global spread of the pandemic. In this study, we use a Syrian hamster model to compare a clinical strain of Alpha variant with an ancestral G614 strain. The Alpha variant succeed to infect animals and to induce a pathology that mimics COVID-19. However, both strains replicate to almost the same level and induced a comparable disease and immune response. A slight fitness advantage is noted for the G614 strain during competition and transmission experiments. These data do not corroborate the epidemiological situation observed during the first half of 2021 in humans nor reports that showed a more rapid replication of Alpha variant in human reconstituted bronchial epithelium. This study highlights the need to combine data from different laboratories using various animal models to decipher the biological properties of newly emerging SARS-CoV-2 variants.


Assuntos
COVID-19 , Modelos Animais de Doenças , Mesocricetus , SARS-CoV-2/fisiologia , Animais , Anticorpos Neutralizantes/sangue , COVID-19/sangue , COVID-19/imunologia , COVID-19/virologia , Citocinas/genética , Feminino , Trato Gastrointestinal/virologia , Genoma Viral , Pulmão/virologia , Líquido da Lavagem Nasal/virologia , SARS-CoV-2/genética , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA