Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 126(14): 141301, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33891448

RESUMO

We present the first joint analysis of cluster abundances and auto or cross-correlations of three cosmic tracer fields: galaxy density, weak gravitational lensing shear, and cluster density split by optical richness. From a joint analysis (4×2pt+N) of cluster abundances, three cluster cross-correlations, and the auto correlations of the galaxy density measured from the first year data of the Dark Energy Survey, we obtain Ω_{m}=0.305_{-0.038}^{+0.055} and σ_{8}=0.783_{-0.054}^{+0.064}. This result is consistent with constraints from the DES-Y1 galaxy clustering and weak lensing two-point correlation functions for the flat νΛCDM model. Consequently, we combine cluster abundances and all two-point correlations from across all three cosmic tracer fields (6×2pt+N) and find improved constraints on cosmological parameters as well as on the cluster observable-mass scaling relation. This analysis is an important advance in both optical cluster cosmology and multiprobe analyses of upcoming wide imaging surveys.

2.
Phys Rev Lett ; 126(9): 091101, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33750144

RESUMO

We perform a comprehensive study of Milky Way (MW) satellite galaxies to constrain the fundamental properties of dark matter (DM). This analysis fully incorporates inhomogeneities in the spatial distribution and detectability of MW satellites and marginalizes over uncertainties in the mapping between galaxies and DM halos, the properties of the MW system, and the disruption of subhalos by the MW disk. Our results are consistent with the cold, collisionless DM paradigm and yield the strongest cosmological constraints to date on particle models of warm, interacting, and fuzzy dark matter. At 95% confidence, we report limits on (i) the mass of thermal relic warm DM, m_{WDM}>6.5 keV (free-streaming length, λ_{fs}≲10h^{-1} kpc), (ii) the velocity-independent DM-proton scattering cross section, σ_{0}<8.8×10^{-29} cm^{2} for a 100 MeV DM particle mass [DM-proton coupling, c_{p}≲(0.3 GeV)^{-2}], and (iii) the mass of fuzzy DM, m_{ϕ}>2.9×10^{-21} eV (de Broglie wavelength, λ_{dB}≲0.5 kpc). These constraints are complementary to other observational and laboratory constraints on DM properties.

3.
Phys Rev Lett ; 122(17): 171301, 2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31107093

RESUMO

The combination of multiple observational probes has long been advocated as a powerful technique to constrain cosmological parameters, in particular dark energy. The Dark Energy Survey has measured 207 spectroscopically confirmed type Ia supernova light curves, the baryon acoustic oscillation feature, weak gravitational lensing, and galaxy clustering. Here we present combined results from these probes, deriving constraints on the equation of state, w, of dark energy and its energy density in the Universe. Independently of other experiments, such as those that measure the cosmic microwave background, the probes from this single photometric survey rule out a Universe with no dark energy, finding w=-0.80_{-0.11}^{+0.09}. The geometry is shown to be consistent with a spatially flat Universe, and we obtain a constraint on the baryon density of Ω_{b}=0.069_{-0.012}^{+0.009} that is independent of early Universe measurements. These results demonstrate the potential power of large multiprobe photometric surveys and pave the way for order of magnitude advances in our constraints on properties of dark energy and cosmology over the next decade.

4.
Phys Rev Lett ; 115(23): 231301, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26684107

RESUMO

The dwarf spheroidal satellite galaxies (dSphs) of the Milky Way are some of the most dark matter (DM) dominated objects known. We report on γ-ray observations of Milky Way dSphs based on six years of Fermi Large Area Telescope data processed with the new Pass8 event-level analysis. None of the dSphs are significantly detected in γ rays, and we present upper limits on the DM annihilation cross section from a combined analysis of 15 dSphs. These constraints are among the strongest and most robust to date and lie below the canonical thermal relic cross section for DM of mass ≲100 GeV annihilating via quark and τ-lepton channels.

5.
Phys Rev Lett ; 112(15): 151103, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24785023

RESUMO

Recent accurate measurements of cosmic-ray (CR) species by ATIC-2, CREAM, and PAMELA reveal an unexpected hardening in the proton and He spectra above a few hundred GeV, a gradual softening of the spectra just below a few hundred GeV, and a harder spectrum of He compared to that of protons. These newly discovered features may offer a clue to the origin of high-energy CRs. We use the Fermi Large Area Telescope observations of the γ-ray emission from Earth's limb for an indirect measurement of the local spectrum of CR protons in the energy range ∼90 GeV-6 TeV (derived from a photon energy range 15 GeV-1 TeV). Our analysis shows that single power law and broken power law spectra fit the data equally well and yield a proton spectrum with index 2.68±0.04 and 2.61±0.08 above ∼200 GeV, respectively.

6.
Science ; 343(6166): 42-7, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24263133

RESUMO

The observations of the exceptionally bright gamma-ray burst (GRB) 130427A by the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope provide constraints on the nature of these unique astrophysical sources. GRB 130427A had the largest fluence, highest-energy photon (95 GeV), longest γ-ray duration (20 hours), and one of the largest isotropic energy releases ever observed from a GRB. Temporal and spectral analyses of GRB 130427A challenge the widely accepted model that the nonthermal high-energy emission in the afterglow phase of GRBs is synchrotron emission radiated by electrons accelerated at an external shock.

7.
Astrophys J ; 784(2)2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34646038

RESUMO

Observations of occultations of bright γ-ray sources by the Sun may reveal predicted pair halos around blazars and/or new physics, such as, e.g., hypothetical light dark matter particles-axions. We use Fermi Gamma-Ray Space Telescope (Fermi) data to analyze four occultations of blazar 3C 279 by the Sun on October 8 each year from 2008 to 2011. A combined analysis of the observations of these occultations allows a point-like source at the position of 3C 279 to be detected with significance of ≈3σ, but does not reveal any significant excess over the flux expected from the quiescent Sun. The likelihood ratio test rules out complete transparency of the Sun to the blazar γ-ray emission at a 3σ confidence level.

8.
Science ; 339(6121): 807-11, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23413352

RESUMO

Cosmic rays are particles (mostly protons) accelerated to relativistic speeds. Despite wide agreement that supernova remnants (SNRs) are the sources of galactic cosmic rays, unequivocal evidence for the acceleration of protons in these objects is still lacking. When accelerated protons encounter interstellar material, they produce neutral pions, which in turn decay into gamma rays. This offers a compelling way to detect the acceleration sites of protons. The identification of pion-decay gamma rays has been difficult because high-energy electrons also produce gamma rays via bremsstrahlung and inverse Compton scattering. We detected the characteristic pion-decay feature in the gamma-ray spectra of two SNRs, IC 443 and W44, with the Fermi Large Area Telescope. This detection provides direct evidence that cosmic-ray protons are accelerated in SNRs.

9.
Science ; 338(6112): 1314-7, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23112297

RESUMO

Millisecond pulsars, old neutron stars spun up by accreting matter from a companion star, can reach high rotation rates of hundreds of revolutions per second. Until now, all such "recycled" rotation-powered pulsars have been detected by their spin-modulated radio emission. In a computing-intensive blind search of gamma-ray data from the Fermi Large Area Telescope (with partial constraints from optical data), we detected a 2.5-millisecond pulsar, PSR J1311-3430. This unambiguously explains a formerly unidentified gamma-ray source that had been a decade-long enigma, confirming previous conjectures. The pulsar is in a circular orbit with an orbital period of only 93 minutes, the shortest of any spin-powered pulsar binary ever found.

10.
Science ; 338(6111): 1190-2, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23118013

RESUMO

The light emitted by stars and accreting compact objects through the history of the universe is encoded in the intensity of the extragalactic background light (EBL). Knowledge of the EBL is important to understand the nature of star formation and galaxy evolution, but direct measurements of the EBL are limited by galactic and other foreground emissions. Here, we report an absorption feature seen in the combined spectra of a sample of gamma-ray blazars out to a redshift of z ∼ 1.6. This feature is caused by attenuation of gamma rays by the EBL at optical to ultraviolet frequencies and allowed us to measure the EBL flux density in this frequency band.

11.
Phys Rev Lett ; 108(1): 011103, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22304252

RESUMO

We measured separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope. Because the instrument does not have an onboard magnet, we distinguish the two species by exploiting Earth's shadow, which is offset in opposite directions for opposite charges due to Earth's magnetic field. We estimate and subtract the cosmic-ray proton background using two different methods that produce consistent results. We report the electron-only spectrum, the positron-only spectrum, and the positron fraction between 20 and 200 GeV. We confirm that the fraction rises with energy in the 20-100 GeV range. The three new spectral points between 100 and 200 GeV are consistent with a fraction that is continuing to rise with energy.

12.
Science ; 335(6065): 189-93, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22246769

RESUMO

Gamma-ray binaries are stellar systems containing a neutron star or black hole, with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL J1018.6-5856 exhibits intensity and spectral modulation with a 16.6-day period. We identified a variable x-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGL J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.

13.
Science ; 331(6018): 739-42, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21212321

RESUMO

A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10(15) electron volts) electrons in a region smaller than 1.4 × 10(-2) parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.

14.
Phys Rev Lett ; 107(24): 241302, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22242987

RESUMO

Satellite galaxies of the Milky Way are among the most promising targets for dark matter searches in gamma rays. We present a search for dark matter consisting of weakly interacting massive particles, applying a joint likelihood analysis to 10 satellite galaxies with 24 months of data of the Fermi Large Area Telescope. No dark matter signal is detected. Including the uncertainty in the dark matter distribution, robust upper limits are placed on dark matter annihilation cross sections. The 95% confidence level upper limits range from about 10(-26) cm3 s(-1) at 5 GeV to about 5×10(-23) cm3 s(-1) at 1 TeV, depending on the dark matter annihilation final state. For the first time, using gamma rays, we are able to rule out models with the most generic cross section (∼3×10(-26) cm3 s(-1) for a purely s-wave cross section), without assuming additional boost factors.

15.
Phys Rev Lett ; 104(10): 101101, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20366411

RESUMO

We report on the first Fermi Large Area Telescope (LAT) measurements of the so-called "extragalactic" diffuse gamma-ray emission (EGB). This component of the diffuse gamma-ray emission is generally considered to have an isotropic or nearly isotropic distribution on the sky with diverse contributions discussed in the literature. The derivation of the EGB is based on detailed modeling of the bright foreground diffuse Galactic gamma-ray emission, the detected LAT sources, and the solar gamma-ray emission. We find the spectrum of the EGB is consistent with a power law with a differential spectral index gamma = 2.41 +/- 0.05 and intensity I(>100 MeV) = (1.03 +/- 0.17) x 10(-5) cm(-2) s(-1) sr(-1), where the error is systematics dominated. Our EGB spectrum is featureless, less intense, and softer than that derived from EGRET data.

16.
Phys Rev Lett ; 104(9): 091302, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20366979

RESUMO

Dark matter (DM) particle annihilation or decay can produce monochromatic gamma rays readily distinguishable from astrophysical sources. gamma-ray line limits from 30 to 200 GeV obtained from 11 months of Fermi Large Area Space Telescope data from 20-300 GeV are presented using a selection based on requirements for a gamma-ray line analysis, and integrated over most of the sky. We obtain gamma-ray line flux upper limits in the range 0.6-4.5x10{-9} cm{-2} s{-1}, and give corresponding DM annihilation cross-section and decay lifetime limits. Theoretical implications are briefly discussed.

17.
Antimicrob Agents Chemother ; 45(10): 2703-9, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11557458

RESUMO

The increasing prevalence of antibiotic resistance among bacterial pathogens prompted a microbiological study of fluoroquinolone structure-activity relationships with resistant mutants. Bacteriostatic and bactericidal activities for 12 fluoroquinolones were examined with a gyrase mutant of Mycobacterium smegmatis and a gyrase-topoisomerase IV double mutant of Staphylococcus aureus. For both organisms C-8 halogen and C-8 methoxy groups enhanced activity. The MIC at which 99% of the isolates tested were inhibited (MIC(99)) was reduced three- to fivefold for the M. smegmatis mutant and seven- to eightfold for the S. aureus mutant by C-8 bromine, chlorine, and methoxy groups. With both organisms a smaller reduction in the MIC(99) (two- to threefold) was associated with a C-8 fluorine moiety. In most comparisons with M. smegmatis the response to a C-8 substituent was similar (within twofold) for wild-type and mutant cells. In contrast, mutant S. aureus was affected more than the wild type by the addition of a C-8 substituent. C-8 halogen and methoxy groups also improved the ability to kill the two mutants and the respective wild-type cells when measured with various fluoroquinolone concentrations during an incubation period equivalent to four to five doubling times. Collectively these data help define a group of fluoroquinolones that can serve (i) as a base for structure refinement and (ii) as test compounds for slowing the development of fluoroquinolone resistance during infection of vertebrate hosts.


Assuntos
Anti-Infecciosos/farmacologia , Halogênios/química , Mycobacterium smegmatis/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Anti-Infecciosos/química , Ciprofloxacina/química , Ciprofloxacina/farmacologia , DNA Girase/genética , DNA Girase/metabolismo , DNA Topoisomerase IV/antagonistas & inibidores , DNA Topoisomerase IV/genética , DNA Topoisomerase IV/metabolismo , Testes de Sensibilidade Microbiana , Mycobacterium smegmatis/enzimologia , Staphylococcus aureus/enzimologia , Inibidores da Topoisomerase II
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA