Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 326(Pt A): 116545, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36401903

RESUMO

Nutrition is fundamental to white-tailed deer (Odocoileus virginianus) management given its relationship to habitat carrying capacity and population productivity. Ecological Sites (ESs) are a United States federal landscape management unit of specific land potential due to unique soils, topography, climate, parent material, and perhaps deer forage nutritional value. We present results of a study that extends the use of ESs to inform white-tailed deer management by evaluating indicator plant chemistry in two spring forb species, Indian cucumber root (Medeola virginiana) and Canada mayflower (Maianthemum canadense), across the northcentral Appalachians. We sampled spring forbs and underlying soils across two ESs: Dry, upland, oak-maple-hemlock hardwood forest (OMH) and Deep soil, high slope, northern hardwood forests (NHF). Plant elemental content, soil pH, and site aspect, slope and elevation were measured. Our results show that forb chemistry differs between species and within a species geographically. Indian cucumber root, as compared to Canada mayflower, has significantly higher Mg, Na, Cu, Fe, and Zn, and lower Mn. Canada mayflower in the NHF ES, versus OMH ES, was found to have significantly higher K, Mn, and B. Indian cucumber root in the NHF ES, versus the OMH ES, was found to have significantly higher Mg, Al, Fe, and Ca:P ratio but lower K. Linear discriminant analysis shows that plant tissue Mn was the best discriminator between species, and between ESs, Canada mayflower plant tissue Mn and Indian cucumber plant tissue P, K, Ca, Mg and Mn were best discriminators. Given that nutrition determines habitat carrying capacity, differences in forage nutrition between ESs may have different potentials to support deer. Forage nutrition is an important aspect of deer habitat conditions and carrying capacity, thus ESs are likely to support deer populations with different growth potential, which means that even if the same plant species occur in different ESs their nutritional value to deer may differ.


Assuntos
Cucumis sativus , Cervos , Animais , Solo , Canadá
2.
J Environ Qual ; 52(2): 328-340, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36334025

RESUMO

Manureshed management guides the sustainable use of manure resources by matching areas of crop demand (nutrient sinks) with areas generating livestock manure (nutrient sources). A better understanding of the impacts of manureshed management on water quality within sensitive watersheds is needed. We quantified the potential water quality benefits of manureshed-oriented management through scenario-based analyses in the Susquehanna River Basin (SRB) using the Soil and Water Assessment Tool. Five manureshed management scenarios were developed and compared with a baseline "business-as-usual" scenario. The baseline assumes manure is less transportable, which means some locations have manure application in excess of crop demand. The "watershed nutrient balance" scenarios assume excess manure from surplus locations is transportable and that manure is applied around the SRB based on crop nutrient demand. The "watershed nutrient balance avoiding runoff prone areas" scenarios assume manure is transportable but not applied in vulnerable landscapes of the SRB. Each scenario was evaluated under two application rates considering crop nitrogen demand (N-based) and phosphorus demand (P-based). Phosphorus-based manureshed management was more effective in water quality improvements than N-based management. Phosphorus-based nutrient balance scenarios simulated 3 and 25% reduction in total N (TN) and total P (TP), respectively, from the baseline scenario at the watershed outlet. The N- and P-based scenarios avoiding runoff prone areas simulated 3 and 6% reduction in TN loss and 4 and 25.2% reduction in TP loss, respectively, from the baseline. Overall, the manureshed management scenarios were more effective in improving the quality of local streams in livestock-intensive regions than at the watershed outlet.


Assuntos
Rios , Qualidade da Água , Animais , Esterco , Solo , Fósforo/análise , Nitrogênio/análise , Gado , Agricultura
3.
J Sci Food Agric ; 102(4): 1508-1513, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34402076

RESUMO

BACKGROUND: Water is critical to the production of crops, especially when faced with seasonal drought or freshwater scarcity. We compared the effect of negative pressure irrigation (NPI) on water use efficiency (WUE), nutrient uptake, yield and quality of Brassica chinensis L. using a greenhouse plot experiment. Three different water supply pressures (-5, -10 and -15 kPa), and a conventional irrigation (CK) treatment, were arranged in a randomized design with three replications. RESULTS: Our results suggest that plant height, leaf area, number of leaves and ratio of root to shoot were significantly correlated with water supply pressure. Specifically, our results show that B. chinensis L. yield was increased 50% with NPI versus CK. Water supply pressure had a significant effect on N and P nutrient uptake and no significant effect on K. The average concentration of vitamin C was greatest with -5 kPa treatment and consecutively declined. According to our results, NPI can save up to 36.8% of water used and improve WUE by 61.3% during growth of B. chinensis L. Our results suggest that the optimum irrigation management strategy is -5 kPa treatment. CONCLUSION: NPI versus CK can provide more stable irrigation water and retain soil moisture during plant growth, resulting in an increased WUE and yield with suitable water supply pressure. While our results suggest that NPI can enhance B. chinensis L. yield and perhaps also quality, future research should explore the mechanism of NPI in relation to yield and water use efficiency. © 2021 Society of Chemical Industry.


Assuntos
Irrigação Agrícola , Brassica , Biomassa , Produtos Agrícolas , Solo , Água/análise
4.
Mov Ecol ; 9(1): 30, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34116712

RESUMO

BACKGROUND: Identifying the behavioral state for wild animals that can't be directly observed is of growing interest to the ecological community. Advances in telemetry technology and statistical methodologies allow researchers to use space-use and movement metrics to infer the underlying, latent, behavioral state of an animal without direct observations. For example, researchers studying ungulate ecology have started using these methods to quantify behaviors related to mating strategies. However, little work has been done to determine if assumed behaviors inferred from movement and space-use patterns correspond to actual behaviors of individuals. METHODS: Using a dataset with male and female white-tailed deer location data, we evaluated the ability of these two methods to correctly identify male-female interaction events (MFIEs). We identified MFIEs using the proximity of their locations in space as indicators of when mating could have occurred. We then tested the ability of utilization distributions (UDs) and hidden Markov models (HMMs) rendered with single sex location data to identify these events. RESULTS: For white-tailed deer, male and female space-use and movement behavior did not vary consistently when with a potential mate. There was no evidence that a probability contour threshold based on UD volume applied to an individual's UD could be used to identify MFIEs. Additionally, HMMs were unable to identify MFIEs, as single MFIEs were often split across multiple states and the primary state of each MFIE was not consistent across events. CONCLUSIONS: Caution is warranted when interpreting behavioral insights rendered from statistical models applied to location data, particularly when there is no form of validation data. For these models to detect latent behaviors, the individual needs to exhibit a consistently different type of space-use and movement when engaged in the behavior. Unvalidated assumptions about that relationship may lead to incorrect inference about mating strategies or other behaviors.

5.
J Environ Qual ; 49(6): 1599-1611, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33043471

RESUMO

Although many agricultural watersheds rely heavily on riparian buffer adoption to meet water quality goals, design and management constraints in current policies create adoption barriers. Based on focus group feedback, we developed a flexible buffer design paradigm that varies buffer width, vegetation, and harvesting. Sixteen years of daily-scale nutrient and sediment loads simulated with the Soil and Water Assessment Tool (SWAT) were coupled to the three-zone Riparian Ecosystem Management Model (REMM) to compare the effectiveness of traditional, policy-based buffer designs with designs that are more flexible and integrate features important to local farmers. Buffer designs included (i) 10 m grass, (ii) 15 m grass, (iii) 15 m deciduous trees, (iv) 30 m grass and trees, (v) 30 m grass and trees with trees harvested every 3 yr, and (vi) 30 m grass and trees with grass harvested every year. Allowing harvesting in one zone of the buffer vegetation (either trees or grasses) minimally affected water quality, with annual average percent reductions differing by <5% (p > .05; 76-78% for total nitrogen [TN], 51-55% for total phosphorus [TP], and 68% for sediment). Under the highest input loading conditions, buffers with lower removal efficiencies removed more total mass than did buffers with high removal efficiencies. Thus, by focusing on mass reduction in addition to percent reduction, watershed-wide buffer implementation may be better targeted to TN, TP, and sediment reduced. These findings have important implications for informing flexible buffer design policies and enhanced placement of buffers in watersheds impaired by nutrient and sediment.


Assuntos
Ecossistema , Fósforo , Agricultura , Soluções Tampão , Nitrogênio , Rios , Árvores
6.
Environ Sci Pollut Res Int ; 27(21): 26495-26501, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32367238

RESUMO

China has become the largest carbon-emitting country in the world since 2007. To achieve national environmental goals by 2030, the carbon emissions per unit of gross domestic product (GDP) will need to fall to 60-65% of 2005 levels. Such a dramatic decrease presents a challenge for a nation in adjusting its energy source and usage, but via monitoring of reductions, greater understanding can be gained of how carbon emitters are responding to national goals. We analyzed the change in carbon emissions from China's fossil energy consumption from population, per capita GDP, energy efficiency improvements and energy structure using a Kaya identity model and Logarithmic Mean Divisia Index (LMDI) factor decomposition method from 2006 to 2018. Results suggest that trends in carbon emissions from 2006 to 2018 can be broken down into four periods: a rapid increase period during 2006-2011, a slowdown increase period during 2011-2014, a consecutive decline period during 2014-2016 and a rebound during 2017-2018. Trends in carbon emissions were greatly affected by per capita GDP and energy efficiency. While per capita GDP increased carbon emissions, energy efficiency had a countering effect on carbon emissions. Our results suggests that China's measures in the past decade to reduce carbon emissions (i.e. carrying out carbon emissions trading on a fixed basis, readjusting the economic structure, optimizing the energy structure, improving energy efficiency and increasing forest carbon sinks) have helped to reduce carbon emissions. However, China should continue to actively respond to climate change while striving to achieve of economic sustainable development and social progress.


Assuntos
Dióxido de Carbono/análise , Carbono/análise , China , Desenvolvimento Econômico , Produto Interno Bruto
7.
AoB Plants ; 11(5): plz044, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31649810

RESUMO

The loss of species diversity and plant community structure throughout the temperate deciduous forests of North America have often been attributed to overbrowsing by white-tailed deer (Odocoileus virginanus). Slow species recovery following removal from browsing, or reduction in deer density, has been termed a legacy effect of past deer herbivory. However, vegetation legacy effects have also coincided with changes to soil chemistry throughout the north-eastern USA. In this paper, we assess the viability of soil chemistry (i.e. pH, extractable nutrients and extractable metals) and other factors (topography, light, overstory basal area and location) as alternative explanations for a lack of vegetation recovery. We compared the relative effects of soil chemistry, site conditions and short-term (1-2 year) deer exclusion on single-species occupancy probabilities of 10 plant taxa common to oak-hickory forests in central Pennsylvania. We found detection for all modelled species was constant and high ( p ^ > 0.65), and occupancy probability of most taxa was best explained by at least one soil chemistry parameter. Specifically, ericaceous competing vegetation was more likely to occupy acidic (pH < 3.5), base cation-poor (K < 0.20 cmolc kg-1) sites, while deer-preferred plants were less likely to occur when soil manganese exceeded 0.1 cmolc kg-1. Short-term deer exclusion did not explain occupancy of any plant taxon, and site conditions were of nominal importance. This study demonstrates the importance of soil chemistry in shaping plant community composition in the north-central Appalachians, and suggests soil as an alternative, or additional, explanation for deer vegetation legacy effects. We suggest that the reliance on phyto-indicators of deer browsing effects may overestimate the effects of browsing if those species are also limited by unfavourable soil conditions. Future research should consider study designs that address the complexity of deer forest interactions, especially in areas with complex site-vegetation histories.

8.
J Environ Qual ; 48(5): 1218-1233, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31589714

RESUMO

The evolution of phosphorus (P) management decision support tools (DSTs) and systems (DSS), in support of food and environmental security has been most strongly affected in developed regions by national strategies (i) to optimize levels of plant available P in agricultural soils, and (ii) to mitigate P runoff to water bodies. In the United States, Western Europe, and New Zealand, combinations of regulatory and voluntary strategies, sometimes backed by economic incentives, have often been driven by reactive legislation to protect water bodies. Farmer-specific DSSs, either based on modeling of P transfer source and transport mechanisms, or when coupled with farm-specific information or local knowledge, have typically guided best practices, education, and implementation, yet applying DSSs in data poor catchments and/or where user adoption is poor hampers the effectiveness of these systems. Recent developments focused on integrated digital mapping of hydrologically sensitive areas and critical source areas, sometimes using real-time data and weather forecasting, have rapidly advanced runoff modeling and education. Advances in technology related to monitoring, imaging, sensors, remote sensing, and analytical instrumentation will facilitate the development of DSSs that can predict heterogeneity over wider geographical areas. However, significant challenges remain in developing DSSs that incorporate "big data" in a format that is acceptable to users, and that adequately accounts for catchment variability, farming systems, and farmer behavior. Future efforts will undoubtedly focus on improving efficiency and conserving phosphate rock reserves in the face of future scarcity or prohibitive cost. Most importantly, the principles reviewed here are critical for sustainable agriculture.


Assuntos
Agricultura , Fósforo , Meio Ambiente , Nova Zelândia , Solo
9.
J Environ Manage ; 202(Pt 1): 208-216, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28735205

RESUMO

Vegetation removal and soil disturbance from natural resource development, combined with invasive plant propagule pressure, can increase vulnerability to plant invasions. Unconventional oil and gas development produces surface disturbance by way of well pad, road, and pipeline construction, and increased traffic. Little is known about the resulting impacts on plant community assembly, including the spread of invasive plants. Our work was conducted in Pennsylvania forests that overlay the Marcellus and Utica shale formations to determine if invasive plants have spread to edge habitat created by unconventional gas development and to investigate factors associated with their presence. A piecewise structural equation model was used to determine the direct and indirect factors associated with invasive plant establishment on well pads. The model included the following measured or calculated variables: current propagule pressure on local access roads, the spatial extent of the pre-development road network (potential source of invasive propagules), the number of wells per pad (indicator of traffic density), and pad age. Sixty-one percent of the 127 well pads surveyed had at least one invasive plant species present. Invasive plant presence on well pads was positively correlated with local propagule pressure on access roads and indirectly with road density pre-development, the number of wells, and age of the well pad. The vast reserves of unconventional oil and gas are in the early stages of development in the US. Continued development of this underground resource must be paired with careful monitoring and management of surface ecological impacts, including the spread of invasive plants. Prioritizing invasive plant monitoring in unconventional oil and gas development areas with existing roads and multi-well pads could improve early detection and control of invasive plants.


Assuntos
Espécies Introduzidas , Plantas , Ecossistema , Gás Natural , Pennsylvania , Solo
10.
Environ Sci Technol ; 51(15): 8851-8860, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28699344

RESUMO

Combining horizontal drilling with high volume hydraulic fracturing has increased extraction of hydrocarbons from low-permeability oil and gas (O&G) formations across the United States; accompanied by increased wastewater production. Surface water discharges of O&G wastewater by centralized waste treatment (CWT) plants pose risks to aquatic and human health. We evaluated the impact of surface water disposal of O&G wastewater from CWT plants upstream of the Conemaugh River Lake (dam controlled reservoir) in western Pennsylvania. Regulatory compliance data were collected to calculate annual contaminant loads (Ba, Cl, total dissolved solids (TDS)) to document historical industrial activity. In this study, two CWT plants 10 and 19 km upstream of a reservoir left geochemical signatures in sediments and porewaters corresponding to peak industrial activity that occurred 5 to 10 years earlier. Sediment cores were sectioned for the collection of paired samples of sediment and porewater, and analyzed for analytes to identify unconventional O&G wastewater disposal. Sediment layers corresponding to the years of maximum O&G wastewater disposal contained higher concentrations of salts, alkaline earth metals, and organic chemicals. Isotopic ratios of 226Ra/228Ra and 87Sr/86Sr identified that peak concentrations of Ra and Sr were likely sourced from wastewaters that originated from the Marcellus Shale formation.


Assuntos
Campos de Petróleo e Gás , Águas Residuárias , Poluentes Químicos da Água/análise , Pennsylvania , Rios , Água
11.
J Environ Manage ; 197: 167-176, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28371760

RESUMO

Large, continuous forest provides critical habitat for some species of forest dependent wildlife. The rapid expansion of shale gas development within the northern Appalachians results in direct loss of such habitat at well sites, pipelines, and access roads; however the resulting habitat fragmentation surrounding such areas may be of greater importance. Previous research has suggested that infrastructure supporting gas development is the driver for habitat loss, but knowledge of what specific infrastructure affects habitat is limited by a lack of spatial tracking of infrastructure development in different land uses. We used high-resolution aerial imagery, land cover data, and well point data to quantify shale gas development across four time periods (2010, 2012, 2014, 2016), including: the number of wells permitted, drilled, and producing gas (a measure of pipeline development); land use change; and forest fragmentation on both private and public land. As of April 2016, the majority of shale gas development was located on private land (74% of constructed well pads); however, the number of wells drilled per pad was lower on private compared to public land (3.5 and 5.4, respectively). Loss of core forest was more than double on private than public land (4.3 and 2.0%, respectively), which likely results from better management practices implemented on public land. Pipelines were by far the largest contributor to the fragmentation of core forest due to shale gas development. Forecasting future land use change resulting from gas development suggests that the greatest loss of core forest will occur with pads constructed farthest from pre-existing pipelines (new pipelines must be built to connect pads) and in areas with greater amounts of core forest. To reduce future fragmentation, our results suggest new pads should be placed near pre-existing pipelines and methods to consolidate pipelines with other infrastructure should be used. Without these mitigation practices, we will continue to lose core forest as a result of new pipelines and infrastructure particularly on private land.


Assuntos
Conservação dos Recursos Naturais , Florestas , Gás Natural , Animais , Animais Selvagens , Ecossistema
12.
J Environ Qual ; 46(6): 1257-1269, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29293860

RESUMO

The advent of real-time, short-term farm management tools is motivated by the need to protect water quality above and beyond the general guidance offered by existing nutrient management plans. Advances in high-performance computing and hydrologic or climate modeling have enabled rapid dissemination of real-time information that can assist landowners and conservation personnel with short-term management planning. This paper reviews short-term decision support tools for agriculture that are under various stages of development and implementation in the United States: (i) Wisconsin's Runoff Risk Advisory Forecast (RRAF) System, (ii) New York's Hydrologically Sensitive Area Prediction Tool, (iii) Virginia's Saturated Area Forecast Model, (iv) Pennsylvania's Fertilizer Forecaster, (v) Washington's Application Risk Management (ARM) System, and (vi) Missouri's Design Storm Notification System. Although these decision support tools differ in their underlying model structure, the resolution at which they are applied, and the hydroclimates to which they are relevant, all provide forecasts (range 24-120 h) of runoff risk or soil moisture saturation derived from National Weather Service Forecast models. Although this review highlights the need for further development of robust and well-supported short-term nutrient management tools, their potential for adoption and ultimate utility requires an understanding of the appropriate context of application, the strategic and operational needs of managers, access to weather forecasts, scales of application (e.g., regional vs. field level), data requirements, and outreach communication structure.


Assuntos
Agricultura , Solo/química , Poluentes da Água , Previsões , New York , Nitrogênio , Pennsylvania , Fósforo , Wisconsin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA