Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6725, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112480

RESUMO

Anaerobic microbial fermentations provide high product yields and are a cornerstone of industrial bio-based processes. However, the need for redox balancing limits the array of fermentable substrate-product combinations. To overcome this limitation, here we design an aerobic fermentative metabolism that allows the introduction of selected respiratory modules. These can use oxygen to re-balance otherwise unbalanced fermentations, hence achieving controlled respiro-fermentative growth. Following this design, we engineer and characterize an obligate fermentative Escherichia coli strain that aerobically ferments glucose to stoichiometric amounts of lactate. We then re-integrate the quinone-dependent glycerol 3-phosphate dehydrogenase and demonstrate glycerol fermentation to lactate while selectively transferring the surplus of electrons to the respiratory chain. To showcase the potential of this fermentation mode, we direct fermentative flux from glycerol towards isobutanol production. In summary, our design permits using oxygen to selectively re-balance fermentations. This concept is an advance freeing highly efficient microbial fermentation from the limitations imposed by traditional redox balancing.


Assuntos
Escherichia coli , Fermentação , Glucose , Glicerol , Ácido Láctico , Engenharia Metabólica , Escherichia coli/metabolismo , Glicerol/metabolismo , Glucose/metabolismo , Engenharia Metabólica/métodos , Ácido Láctico/metabolismo , Oxirredução , Oxigênio/metabolismo , Glicerolfosfato Desidrogenase/metabolismo , Butanóis/metabolismo , Aerobiose
2.
Metab Eng ; 82: 12-28, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38160747

RESUMO

Synthetic biology aims at designing new biological functions from first principles. These new designs allow to expand the natural solution space and overcome the limitations of naturally evolved systems. One example is synthetic CO2-fixation pathways that promise to provide more efficient ways for the capture and conversion of CO2 than natural pathways, such as the Calvin Benson Bassham (CBB) cycle of photosynthesis. In this review, we provide a practical guideline for the design and realization of such new-to-nature CO2-fixation pathways. We introduce the concept of "synthetic CO2-fixation", and give a general overview over the enzymology and topology of synthetic pathways, before we derive general principles for their design from their eight naturally evolved analogs. We provide a comprehensive summary of synthetic carbon-assimilation pathways and derive a step-by-step, practical guide from the theoretical design to their practical implementation, before ending with an outlook on new developments in the field.


Assuntos
Dióxido de Carbono , Fotossíntese , Dióxido de Carbono/metabolismo , Carbono/metabolismo , Ciclo do Carbono
3.
Metab Eng ; 79: 49-65, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37414134

RESUMO

To advance the sustainability of the biobased economy, our society needs to develop novel bioprocesses based on truly renewable resources. The C1-molecule formate is increasingly proposed as carbon and energy source for microbial fermentations, as it can be efficiently generated electrochemically from CO2 and renewable energy. Yet, its biotechnological conversion into value-added compounds has been limited to a handful of examples. In this work, we engineered the natural formatotrophic bacterium C. necator as cell factory to enable biological conversion of formate into crotonate, a platform short-chain unsaturated carboxylic acid of biotechnological relevance. First, we developed a small-scale (150-mL working volume) cultivation setup for growing C. necator in minimal medium using formate as only carbon and energy source. By using a fed-batch strategy with automatic feeding of formic acid, we could increase final biomass concentrations 15-fold compared to batch cultivations in flasks. Then, we engineered a heterologous crotonate pathway in the bacterium via a modular approach, where each pathway section was assessed using multiple candidates. The best performing modules included a malonyl-CoA bypass for increasing the thermodynamic drive towards the intermediate acetoacetyl-CoA and subsequent conversion to crotonyl-CoA through partial reverse ß-oxidation. This pathway architecture was then tested for formate-based biosynthesis in our fed-batch setup, resulting in a two-fold higher titer, three-fold higher productivity, and five-fold higher yield compared to the strain not harboring the bypass. Eventually, we reached a maximum product titer of 148.0 ± 6.8 mg/L. Altogether, this work consists in a proof-of-principle integrating bioprocess and metabolic engineering approaches for the biological upgrading of formate into a value-added platform chemical.


Assuntos
Cupriavidus necator , Cupriavidus necator/genética , Crotonatos/metabolismo , Engenharia Metabólica/métodos , Formiatos/metabolismo , Carbono/metabolismo
4.
Metab Eng ; 74: 191-205, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36328297

RESUMO

Formate is a promising, water-soluble C1 feedstock for biotechnology that can be efficiently produced from CO2-but formatotrophy has been engineered in only a few industrially-relevant microbial hosts. We addressed the challenge of expanding the feedstock range of bacterial hosts by adopting Pseudomonas putida as a robust platform for synthetic formate assimilation. Here, the metabolism of a genome-reduced variant of P. putida was radically rewired to establish synthetic auxotrophies that could be functionally complemented by expressing components of the reductive glycine (rGly) pathway. We adopted a modular engineering approach, dividing C1 assimilation in segments composed of both heterologous activities (sourced from Methylobacterium extorquens) and native biochemical reactions. Modular expression of rGly pathway elements enabled growth on formate as carbon source and acetate (predominantly for energy supply), and adaptive laboratory evolution of two lineages of engineered P. putida formatotrophs lead to doubling times of ca. 15 h. We likewise identified emergent metabolic features for assimilation of C1 units in these evolved P. putida populations. Taken together, our results consolidate the landscape of useful microbial platforms that can be implemented for C1-based biotechnological production towards a formate bioeconomy.


Assuntos
Methylobacterium extorquens , Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Engenharia Metabólica/métodos , Formiatos/metabolismo , Methylobacterium extorquens/genética , Glicina/metabolismo
5.
Adv Biochem Eng Biotechnol ; 180: 299-350, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35364693

RESUMO

In recent years the reductive glycine pathway (rGlyP) has emerged as a promising pathway for the assimilation of formate and other sustainable C1-feedstocks for future biotechnology. It was originally proposed as an attractive "synthetic pathway" to support formatotrophic growth due to its high ATP efficiency, linear structure, and limited overlap with native pathways in most microbial hosts. Here, we present the current state of research on this pathway including breakthroughs on its engineering. Different variants of the rGlyP are discussed, including its core module for formate to glycine conversion, as well as varying modules for substrate conversion to formate, and glycine assimilation routes. Very recently, the rGlyP has been successfully implemented for synthetic formatotrophic growth, as well as for growth on methanol, in some bacterial hosts. We discuss the engineering strategies employed in these studies, including growth-coupled selection of functional pathway modules. We also compare the rGlyP to other natural and synthetic C1-assimilation pathways. Finally, we provide an outlook on open challenges and opportunities for the rGlyP, including its engineering into more biotechnological hosts, as well as the still-to-be realized production of value-added chemicals via this pathway. We expect that further research on the rGlyP will support the efficient use of sustainable C1-substrates in bioproduction.


Assuntos
Glicina , Engenharia Metabólica , Biotecnologia , Formiatos/metabolismo , Glicina/metabolismo
6.
Biodes Res ; 2022: 9859643, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37850128

RESUMO

All living organisms share similar reactions within their central metabolism to provide precursors for all essential building blocks and reducing power. To identify whether alternative metabolic routes of glycolysis can operate in E. coli, we complementarily employed in silico design, rational engineering, and adaptive laboratory evolution. First, we used a genome-scale model and identified two potential pathways within the metabolic network of this organism replacing canonical Embden-Meyerhof-Parnas (EMP) glycolysis to convert phosphosugars into organic acids. One of these glycolytic routes proceeds via methylglyoxal and the other via serine biosynthesis and degradation. Then, we implemented both pathways in E. coli strains harboring defective EMP glycolysis. Surprisingly, the pathway via methylglyoxal seemed to immediately operate in a triosephosphate isomerase deletion strain cultivated on glycerol. By contrast, in a phosphoglycerate kinase deletion strain, the overexpression of methylglyoxal synthase was necessary to restore growth of the strain. Furthermore, we engineered the "serine shunt" which converts 3-phosphoglycerate via serine biosynthesis and degradation to pyruvate, bypassing an enolase deletion. Finally, to explore which of these alternatives would emerge by natural selection, we performed an adaptive laboratory evolution study using an enolase deletion strain. Our experiments suggest that the evolved mutants use the serine shunt. Our study reveals the flexible repurposing of metabolic pathways to create new metabolite links and rewire central metabolism.

7.
Nat Commun ; 11(1): 5812, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33199707

RESUMO

Carbon fixation is one of the most important biochemical processes. Most natural carbon fixation pathways are thought to have emerged from enzymes that originally performed other metabolic tasks. Can we recreate the emergence of a carbon fixation pathway in a heterotrophic host by recruiting only endogenous enzymes? In this study, we address this question by systematically analyzing possible carbon fixation pathways composed only of Escherichia coli native enzymes. We identify the GED (Gnd-Entner-Doudoroff) cycle as the simplest pathway that can operate with high thermodynamic driving force. This autocatalytic route is based on reductive carboxylation of ribulose 5-phosphate (Ru5P) by 6-phosphogluconate dehydrogenase (Gnd), followed by reactions of the Entner-Doudoroff pathway, gluconeogenesis, and the pentose phosphate pathway. We demonstrate the in vivo feasibility of this new-to-nature pathway by constructing E. coli gene deletion strains whose growth on pentose sugars depends on the GED shunt, a linear variant of the GED cycle which does not require the regeneration of Ru5P. Several metabolic adaptations, most importantly the increased production of NADPH, assist in establishing sufficiently high flux to sustain this growth. Our study exemplifies a trajectory for the emergence of carbon fixation in a heterotrophic organism and demonstrates a synthetic pathway of biotechnological interest.


Assuntos
Ciclo do Carbono , Escherichia coli/metabolismo , Adaptação Fisiológica , Simulação por Computador , Escherichia coli/enzimologia , Fermentação , Cinética , Mutação/genética , Oxirredução , Açúcares/metabolismo
8.
Elife ; 92020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32831171

RESUMO

The promiscuous activities of enzymes provide fertile ground for the evolution of new metabolic pathways. Here, we systematically explore the ability of E. coli to harness underground metabolism to compensate for the deletion of an essential biosynthetic pathway. By deleting all threonine deaminases, we generated a strain in which isoleucine biosynthesis was interrupted at the level of 2-ketobutyrate. Incubation of this strain under aerobic conditions resulted in the emergence of a novel 2-ketobutyrate biosynthesis pathway based upon the promiscuous cleavage of O-succinyl-L-homoserine by cystathionine γ-synthase (MetB). Under anaerobic conditions, pyruvate formate-lyase enabled 2-ketobutyrate biosynthesis from propionyl-CoA and formate. Surprisingly, we found this anaerobic route to provide a substantial fraction of isoleucine in a wild-type strain when propionate is available in the medium. This study demonstrates the selective advantage underground metabolism offers, providing metabolic redundancy and flexibility which allow for the best use of environmental carbon sources.


Assuntos
Butiratos/metabolismo , Carbono-Oxigênio Liases/metabolismo , Escherichia coli/metabolismo , Deleção de Genes , Homosserina/análogos & derivados , Isoleucina/metabolismo , Escherichia coli/genética , Homosserina/metabolismo , Redes e Vias Metabólicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA