Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Transgenic Res ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088185

RESUMO

Mouse models with complex genetic backgrounds are increasingly used in preclinical research to accurately model human disease and to enable temporal and cell-specific evaluation of genetic manipulations. Backcrossing mice onto these complex genetic backgrounds takes time and leads to significant wastage of animals. In this study, we aimed to evaluate whether site-specific nucleases could be used to generate additional genetic mutations in a complex genetic background, using the REVERSA mouse model of atherosclerosis, a model harbouring four genetically altered alleles. The model is comprised of a functional null mutation in the Ldlr gene in combination with a ApoB100 allele, which, after high-fat diet, leads to the rapid development of atherosclerosis. The regression of the pathology is achieved by inducible knock-out of the Mttp gene. Here we report an investigation to establish if microinjection of site-specific nucleases directly into zygotes prepared from the REVERSA could be used to investigate the role of the ATP binding cassette transporter G1 (ABCG1) in atherosclerosis regression. We show that using this approach we could successfully generate two independent knockout lines on the REVERSA background, both of which exhibited the expected phenotype of a significant reduction in cholesterol efflux to HDL in bone marrow-derived macrophages. However, loss of Abcg1 did not impact atherosclerosis regression in either the aortic root or in aortic arch, demonstrating no important role for this transporter subtype. We have demonstrated that site-specific nucleases can be used to create genetic modifications directly onto complex disease backgrounds and can be used to explore gene function without the need for laborious backcrossing of independent strains, conveying a significant 3Rs advantage.

2.
Circ Res ; 135(1): 6-25, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38747151

RESUMO

BACKGROUND: Coronary artery disease (CAD), the leading cause of death worldwide, is influenced by both environmental and genetic factors. Although over 250 genetic risk loci have been identified through genome-wide association studies, the specific causal variants and their regulatory mechanisms are still largely unknown, particularly in disease-relevant cell types such as macrophages. METHODS: We utilized single-cell RNA-seq and single-cell multiomics approaches in primary human monocyte-derived macrophages to explore the transcriptional regulatory network involved in a critical pathogenic event of coronary atherosclerosis-the formation of lipid-laden foam cells. The relative genetic contribution to CAD was assessed by partitioning disease heritability across different macrophage subpopulations. Meta-analysis of single-cell RNA-seq data sets from 38 human atherosclerotic samples was conducted to provide high-resolution cross-referencing to macrophage subpopulations in vivo. RESULTS: We identified 18 782 cis-regulatory elements by jointly profiling the gene expression and chromatin accessibility of >5000 macrophages. Integration with CAD genome-wide association study data prioritized 121 CAD-related genetic variants and 56 candidate causal genes. We showed that CAD heritability was not uniformly distributed and was particularly enriched in the gene programs of a novel CD52-hi lipid-handling macrophage subpopulation. These CD52-hi macrophages displayed significantly less lipoprotein accumulation and were also found in human atherosclerotic plaques. We investigated the cis-regulatory effect of a risk variant rs10488763 on FDX1, implicating the recruitment of AP-1 and C/EBP-ß in the causal mechanisms at this locus. CONCLUSIONS: Our results provide genetic evidence of the divergent roles of macrophage subsets in atherogenesis and highlight lipid-handling macrophages as a key subpopulation through which genetic variants operate to influence disease. These findings provide an unbiased framework for functional fine-mapping of genome-wide association study results using single-cell multiomics and offer new insights into the genotype-environment interactions underlying atherosclerotic disease.


Assuntos
Doença da Artéria Coronariana , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Macrófagos , Humanos , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , Macrófagos/metabolismo , Fatores de Risco , Análise de Célula Única , Redes Reguladoras de Genes , Masculino , Polimorfismo de Nucleotídeo Único , Feminino
3.
Brain Behav Immun ; 115: 718-726, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37995835

RESUMO

Aberrant cortical development is a key feature of neurodevelopmental disorders such as autism spectrum disorder and schizophrenia. Both genetic and environmental risk factors are thought to contribute to defects in cortical development; however, model systems that can capture the dynamic process of human cortical development are not well established. To address this challenge, we combined recent progress in induced pluripotent stem cell differentiation with advanced live cell imaging techniques to establish a novel three-dimensional neurosphere assay, amenable to genetic and environmental modifications, to investigate key aspects of human cortical development in real-time. For the first time, we demonstrate the ability to visualise and quantify radial glial extension and neural migration through live cell imaging. To show proof-of-concept, we used our neurosphere assay to study the effect of a simulated viral infection, a well-established environmental risk factor in neurodevelopmental disorders, on cortical development. This was achieved by exposing neurospheres to the viral mimic, polyinosinic:polycytidylic acid. The results showed significant reductions in radial glia growth and neural migration in three independent differentiations. Further, fixed imaging highlighted reductions in the HOPX-expressing outer radial glia scaffolding and a consequent decrease in the migration of CTIP2-expressing cortical cells. Overall, our results provide new insight into how infections may exert deleterious effects on the developing human cortex.


Assuntos
Transtorno do Espectro Autista , Células-Tronco Pluripotentes Induzidas , Viroses , Humanos , Neurogênese , Diferenciação Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA