Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 326(1): C95-C106, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37982175

RESUMO

Mechanical loading is essential for maintaining bone health. Here, we aimed to investigate the role of ATP and ADP in the mechanotransduction of bone-resorptive osteoclasts. Single osteoclast in primary cultures from 10 to 12-wk-old mice was mechanically stimulated by a gentle touch with a micropipette. Changes in cytosolic free calcium [Ca2+]i were analyzed in Fura-2 loaded osteoclasts. The cell injury was assessed by analyzing the cellular Fura-2 loss and classified as severe or mild using k-means. Osteoclasts responded to mechanical stimuli with transient calcium elevation (primary responders) and transduced these signals to neighboring cells, which responded with delayed calcium elevations (secondary responders). Severely injured osteoclasts had higher calcium transients than mildly injured cells. Fluid shear stress similarly induced reversible cell injury in osteoclasts. Secondary responses were abolished by treatment with A-804598, a specific inhibitor of P2X7, but not suramin, a broad P2 receptor blocker. Osteoclasts responded to ATP and ADP with concentration-dependent changes in [Ca2+]i. We performed osteoclast micropipette stimulation in the presence of phosphoenolpyruvate and pyruvate kinase which converted all ADP in solution to ATP, or with hexokinase converting all ATP to ADP. Osteoclasts with mild membrane injury demonstrated similar calcium responses in ATP and ADP-rich environments. However, when the mechanotransductive signal to severe osteoclast injury was converted to ADP, the fraction of secondary responders and their [Ca2+]i amplitude was higher. This study suggests the importance of osteoclast mechanobiology and the role of ADP-mediated signaling in conditions of altered mechanical loading associated with bone loss.NEW & NOTEWORTHY Osteoclasts are rarely considered as cells that participate in mechanical signaling in bone. We show that osteoclasts are capable of sensing and transmitting mechanical signals to neighboring cells. Mechanical stimulation commonly induces minor repairable membrane injury in osteoclasts. ATP and especially ADP were found to play important roles in the mechanoresponsiveness of osteoclasts. This study highlights the importance of osteoclast mechanobiology especially in conditions of altered mechanical loading associated with bone loss, such as in microgravity.


Assuntos
Mecanotransdução Celular , Osteoclastos , Camundongos , Animais , Osteoclastos/metabolismo , Cálcio/metabolismo , Fura-2/metabolismo , Trifosfato de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo
2.
Bone Rep ; 17: 101608, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35992507

RESUMO

ATP is a ubiquitous intracellular molecule critical for cellular bioenergetics. ATP is released in response to mechanical stimulation through vesicular release, small tears in cellular plasma membranes, or when cells are destroyed by traumatic forces. Extracellular ATP is degraded by ecto-ATPases to form ADP and eventually adenosine. ATP, ADP, and adenosine signal through purinergic receptors, including seven P2X ATP-gated cation channels, seven G-protein coupled P2Y receptors responsive to ATP and ADP, and four P1 receptors stimulated by adenosine. The goal of this review is to build a conceptual model of the role of different components of this complex system in coordinating cellular responses that are appropriate to the degree of mechanical stimulation, cell proximity to the location of mechanical injury, and time from the event. We propose that route and amount of ATP release depend on the scale of mechanical forces, ranging from vesicular release of small ATP boluses upon membrane deformation, to leakage of ATP through resealable plasma membrane tears, to spillage of cellular content due to destructive forces. Correspondingly, different P2 receptors responsive to ATP will be activated according to their affinity at the site of mechanical stimulation. ATP is a small molecule that readily diffuses through the environment, bringing the signal to the surrounding cells. ATP is also degraded to ADP which can stimulate a distinct set of P2 receptors. We propose that depending on the magnitude of mechanical forces and distance from the site of their application, ATP/ADP profiles will be different, allowing the relay of information about tissue level injury and proximity. Lastly, ADP is degraded to adenosine acting via its P1 receptors. The presence of large amounts of adenosine without ATP, indicates that an active source of ATP release is no longer present, initiating the transition to the recovery phase. This model consolidates the knowledge regarding the individual components of the purinergic system into a conceptual framework of choreographed responses to physical forces.

3.
Bone ; 154: 116218, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34571201

RESUMO

Physical forces are critical for successful function of many organs including bone. Interestingly, the timing of exercise during the day alters physiology and gene expression in many organs due to circadian rhythms. Circadian clocks in tissues, such as bone, express circadian clock genes that target tissue-specific genes, resulting in tissue-specific rhythmic gene expression (clock-controlled genes). We hypothesized that the adaptive response of bone to mechanical loading is regulated by circadian rhythms. First, mice were sham loaded and sacrificed 8 h later, which amounted to tissues being collected at zeitgeber time (ZT)2, 6, 10, 14, 18, and 22. Cortical bone of the tibiae collected from these mice displayed diurnal expression of core clock genes and key osteocyte and osteoblast-related genes, such as the Wnt-signaling inhibitors Sost and Dkk1, indicating these are clock-controlled genes. Serum bone turnover markers did not display rhythmicity. Second, mice underwent a single bout of in vivo loading at either ZT2 or ZT14 and were sacrificed 1, 8, or 24 h after loading. Loading at ZT2 resulted in Sost upregulation, while loading at ZT14 led to Sost and Dkk1 downregulation. Third, mice underwent daily in vivo tibial loading over 2 weeks administered either in the morning, (ZT2, resting phase) or evening (ZT14, active phase). In vivo microCT was performed at days 0, 5, 10, and 15 and conventional histomorphometry was performed at day 15. All outcome measures indicated a robust response to loading, but only microCT-based time-lapse morphometry showed that loading at ZT14 resulted in a greater endocortical bone formation response compared to mice loaded at ZT2. The decreased Sost and Dkk1 expression coincident with the modest, but significant time-of-day specific increase in adaptive bone formation, suggests that circadian clocks influence bone mechanoresponse.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Animais , Osso e Ossos , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Osso Cortical , Camundongos , Osteócitos , Osteogênese/fisiologia
4.
Int J Mol Sci ; 22(7)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801677

RESUMO

P2Y13 is an ADP-stimulated G-protein coupled receptor implicated in many physiological processes, including neurotransmission, metabolism, pain, and bone homeostasis. Quantitative understanding of P2Y13 activation dynamics is important for translational studies. We systematically identified PubMed annotated studies that characterized concentration-dependence of P2Y13 responses to natural and synthetic agonists. Since the comparison of the efficacy (maximum response) is difficult for studies performed in different systems, we normalized the data and conducted a meta-analysis of EC50 (concentration at half-maximum response) and Hill coefficient (slope) of P2Y13-mediated responses to different agonists. For signaling events induced by heterologously expressed P2Y13, EC50 of ADP-like agonists was 17.2 nM (95% CI: 7.7-38.5), with Hills coefficient of 4.4 (95% CI: 3.3-5.4), while ATP-like agonists had EC50 of 0.45 µM (95% CI: 0.06-3.15). For functional responses of endogenously expressed P2Y13, EC50 of ADP-like agonists was 1.76 µM (95% CI: 0.3-10.06). The EC50 of ADP-like agonists was lower for the brain P2Y13 than the blood P2Y13. ADP-like agonists were also more potent for human P2Y13 compared to rodent P2Y13. Thus, P2Y13 appears to be the most ADP-sensitive receptor characterized to date. The detailed understanding of tissue- and species-related differences in the P2Y13 response to ADP will improve the selectivity and specificity of future pharmacological compounds.


Assuntos
Agonistas Purinérgicos/farmacologia , Receptores Purinérgicos P2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Difosfato de Adenosina/química , Animais , Encéfalo/efeitos dos fármacos , Embrião de Galinha , Relação Dose-Resposta a Droga , Humanos , Concentração Inibidora 50 , Camundongos , Ratos , Software , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA