Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Microbiol Res ; 282: 127639, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38354626

RESUMO

Soil salinity negatively affects microbial communities, soil fertility, and agricultural productivity and has become a major agricultural problem worldwide. Plant growth-promoting rhizobacteria (PGPR) with salt tolerance can benefit plant growth under saline conditions and diminish the negative effects of salt stress on plants. In this study, we aimed to understand the salt-tolerance mechanism of Paenibacillus polymyxa at the genetic and metabolic levels and elucidate the mechanism of strain SC2 in promoting maize growth under saline conditions. Under salt stress, we found that strain SC2 promoted maize seedling growth, which was accompanied by a significant upregulation of genes encoding for the biosynthesis of peptidoglycan, polysaccharide, and fatty acid, the metabolism of purine and pyrimidine, and the transport of osmoprotectants such as trehalose, glycine betaine, and K+ in strain SC2. To further enhance the salt resistance of strain SC2, three mutants (SC2-11, SC2-13, and SC2-14) with higher capacities for salt resistance and exopolysaccharide synthesis were obtained via atmospheric and room-temperature plasma mutagenesis. In saline-alkaline soil, the mutants showed better promoting effect on maize seedlings than wild-type SC2. The fresh weight of maize seedlings was increased by 68.10% after treatment with SC2-11 compared with that of the control group. The transcriptome analysis of maize roots demonstrated that SC2 and SC2-11 could induce the upregulation of genes related to the plant hormone signal transduction, starch and sucrose metabolism, reactive oxygen species scavenging, and auxin and ethylene signaling under saline-alkaline stress. In addition, various transcription factors, such as zinc finger proteins, ethylene-responsive-element-binding protein, WRKY, myeloblastosis proteins, basic helix-loop-helix proteins, and NAC proteins, were up-regulated in response to abiotic stress. Moreover, the microbial community composition of maize rhizosphere soil after inoculating with strain SC2 was varied from the one after inoculating with mutant SC2-11. Our results provide new insights into the various genes involved in the salt resistance of strain SC2 and a theoretical basis for utilizing P. polymyxa in saline-alkaline environments.


Assuntos
Paenibacillus polymyxa , Plântula , Plântula/microbiologia , Paenibacillus polymyxa/genética , Zea mays/microbiologia , Solo , Etilenos/metabolismo
2.
Appl Microbiol Biotechnol ; 108(1): 17, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38170316

RESUMO

Polymyxins are cationic peptide antibiotics and regarded as the "final line of defense" against multidrug-resistant bacterial infections. Meanwhile, some polymyxin-resistant strains and the corresponding resistance mechanisms have also been reported. However, the response of the polymyxin-producing strain Paenibacillus polymyxa to polymyxin stress remains unclear. The purpose of this study was to investigate the stress response of gram-positive P. polymyxa SC2 to polymyxin B and to identify functional genes involved in the stress response process. Polymyxin B treatment upregulated the expression of genes related to basal metabolism, transcriptional regulation, transport, and flagella formation and increased intracellular ROS levels, flagellar motility, and biofilm formation in P. polymyxa SC2. Adding magnesium, calcium, and iron alleviated the stress of polymyxin B on P. polymyxa SC2, furthermore, magnesium and calcium could improve the resistance of P. polymyxa SC2 to polymyxin B by promoting biofilm formation. Meanwhile, functional identification of differentially expressed genes indicated that an ABC superfamily transporter YwjA was involved in the stress response to polymyxin B of P. polymyxa SC2. This study provides an important reference for improving the resistance of P. polymyxa to polymyxins and increasing the yield of polymyxins. KEY POINTS: • Phenotypic responses of P. polymyxa to polymyxin B was performed and indicated by RNA-seq • Forming biofilm was a key strategy of P. polymyxa to alleviate polymyxin stress • ABC transporter YwjA was involved in the stress resistance of P. polymyxa to polymyxin B.


Assuntos
Paenibacillus polymyxa , Paenibacillus , Paenibacillus polymyxa/genética , Polimixina B/farmacologia , Polimixina B/metabolismo , Paenibacillus/genética , Paenibacillus/metabolismo , Cálcio/metabolismo , Magnésio , Polimixinas/farmacologia
3.
Microbiol Spectr ; 12(1): e0229323, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38054717

RESUMO

IMPORTANCE: Polymyxins are considered the last line of defense against multidrug-resistant bacteria. The regulatory mechanism of polymyxin synthesis is poorly studied in Paenibacillus polymyxa. In this study, we found that Abh and AbrB3 negatively regulated, whereas Spo0A positively regulated polymyxin synthesis in P. polymyxa SC2. In addition, a regulatory relationship between Abh, AbrB3, and Spo0A was revealed, which regulate polymyxin synthesis via multiple regulatory mechanisms in P. polymyxa.


Assuntos
Paenibacillus polymyxa , Paenibacillus , Polimixinas , Paenibacillus polymyxa/genética , Paenibacillus/genética
4.
Physiol Mol Biol Plants ; 28(11-12): 1997-2009, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36573143

RESUMO

Volatile organic compounds (VOCs) have the characteristics of long distance propagation, low concentration, perception, and indirect contact between organisms. In this experiment, Lysinibacillus macroides Xi9 was isolated from cassava residue, and the VOCs produced by this strain were analyzed by the SPME-GC-MS method, mainly including alcohols, esters, and alkanes. By inoculation of L. macroides Xi9, VOCs can promote the growth and change the root-system architecture of Arabidopsis seedlings. The results showed that the number of lateral roots, root density, and fresh weight of Arabidopsis seedlings were significantly higher (p ≤ 0.01), and the number of roots hair was also increased after exposure to strain Xi9. Compared with the control group, the transcriptome analysis of Arabidopsis seedlings treated with strain Xi9 for 5 days revealed a total of 508 genes differentially expressed (p < 0.05). After Gene Ontology enrichment analysis, it was found that genes encoding nitrate transport and assimilation, and the lateral root-related gene ANR1 were up-regulated. The content of NO3 - and amino acid in Arabidopsis seedlings were significantly higher from control group (p ≤ 0.01). Plant cell wall-related EXPA family genes and pectin lyase gene were up-regulated, resulting cell elongation of leaf. SAUR41 and up-regulation of its subfamily members, as well as the down-regulation of auxin efflux carrier protein PILS5 and auxin response factor 20 (ARF20) led to the accumulation of auxin. These results indicated that VOCs of strain Xi9 promote Arabidopsis seedlings growth and development by promoting nitrogen uptake, regulating auxin synthesis, and improving cell wall modification. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01268-3.

5.
Front Microbiol ; 13: 1039806, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36483206

RESUMO

The multiple-sugar metabolism regulator (MsmR), a transcription factor belonging to the AraC/XylS family, participates in polysaccharide metabolism and virulence. However, the transcriptional regulatory mechanisms of MsmR1 in Paenibacillus polymyxa remain unclear. In this study, knocking out msmR1 was found to reduce polymyxin synthesis by the SC2-M1 strain. Chromatin immunoprecipitation assay with sequencing (ChIP-seq) revealed that most enriched pathway was that of carbohydrate metabolism. Additionally, electromobility shift assays (EMSA) confirmed the direct interaction between MsmR1 and the promoter regions of oppC3, sucA, sdr3, pepF, yycN, PPSC2_23180, pppL, and ydfp. MsmR1 stimulates polymyxin biosynthesis by directly binding to the promoter regions of oppC3 and sdr3, while also directly regulating sucA and influencing the citrate cycle (TCA cycle). In addition, MsmR1 directly activates pepF and was beneficial for spore and biofilm formation. These results indicated that MsmR1 could regulate carbohydrate and amino acid metabolism, and indirectly affect biological processes such as polymyxin synthesis, biofilm formation, and motility. Moreover, MsmR1 could be autoregulated. Hence, this study expand the current knowledge of MsmR1 and will be beneficial for the application of P. polymyxa SC2 in the biological control against the certain pathogens in pepper.

7.
Biotechnol Biofuels Bioprod ; 15(1): 81, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953838

RESUMO

BACKGROUND: Paenibacillus polymyxa is a typical plant growth-promoting rhizobacterium (PGPR), and synthesis of indole-3-acetic acid (IAA) is one of the reasons for its growth-promoting capacity. The synthetic pathways of IAA in P. polymyxa must be identified and modified. RESULTS: P. polymyxa SC2 and its spontaneous mutant SC2-M1 could promote plant growth by directly secreting IAA. Through metabonomic and genomic analysis, the genes patA, ilvB3, and fusE in the native IPyA pathway of IAA synthesis in strain SC2-M1 were predicted. A novel strong promoter P04420 was rationally selected, synthetically analyzed, and then evaluated on its ability to express IAA synthetic genes. Co-expression of three genes, patA, ilvB3, and fusE, increased IAA yield by 60% in strain SC2-M1. Furthermore, the heterogeneous gene iaam of the IAM pathway and two heterogeneous IPyA pathways of IAA synthesis were selected to improve the IAA yield of strain SC2-M1. The genes ELJP6_14505, ipdC, and ELJP6_00725 of the entire IPyA pathway from Enterobacter ludwigii JP6 were expressed well by promoter P04420 in strain SC2-M1 and increased IAA yield in the engineered strain SC2-M1 from 13 to 31 µg/mL, which was an increase of 138%. CONCLUSIONS: The results of our study help reveal and enhance the IAA synthesis pathways of P. polymyxa and its future application.

8.
Front Microbiol ; 13: 976484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033877

RESUMO

Rhizosphere Streptomyces is one of the important types of rhizosphere microorganisms that plays an important role in promoting plant growth and controlling plant diseases to maintain agricultural ecosystem balance and green ecological agriculture development as beneficial bacteria. Microbial co-culture simulates the complex biocommunity in nature, which has more advantages than the monoculture with a synergistic effect. As the key signal mediums of microorganisms, plants, and their interactions, microbial metabolites are of great significance in revealing their functional mechanism. In this study, two potential plant growth-promoting rhizobacteria, Streptomyces albireticuli MDJK11, and Streptomyces alboflavus MDJK44, were selected to explore the effects of co-culture and monoculture on plant growth promotion and disease prevention, and the metabolic material basis was analyzed by metabonomics. Results showed that Streptomyces MDJK11, MDJK44 monoculture, and co-culture condition all showed good growth promoting and antimicrobial effects. Moreover, as compared to the monoculture, the co-culture showed the advantage of a synergistic enhancement effect. LC-MS-based metabonomics analysis showed the metabolic material bases of Streptomyces for plant growth promotion and disease prevention were mainly plant hormone and antibiotics and the co-culture condition could significantly stimulate the production of plant hormone promoters and macrolide, cyclic peptide, and aminoglycoside antibiotics. The study proved that the co-cultures of S. albireticuli MDJK11 and S. alboflavus MDJK44 have great potential in crop growth promotion and disease prevention.

9.
Curr Microbiol ; 79(9): 249, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35834051

RESUMO

Bacillus altitudinis is a widely distributed soil bacterium that has various functional activities, including remediation of contaminated soil, degradation of herbicides, and enhancement of plant growth. B. altitudinis GQYP101 was isolated from the rhizosphere soil of Lycium barbarum L. and demonstrated potential as a plant growth-promoting bacterium. In this work, strain GQYP101 could solubilize phosphorus, and increased the stem diameter, maximum leaf area, and fresh weight of corn in a pot experiment. Nitrogen and phosphorus contents of corn seedlings (aerial part) increased by 100% and 47.9%, respectively, after application of strain GQYP101. Concurrently, nitrogen and phosphorus contents of corn root also increased, by 55.40% and 20.3%, respectively. Furthermore, rhizosphere soil nutrients were altered and the content of available phosphorus increased by 73.2% after application of strain GQYP101. The mechanism by which strain GQYP101 improved plant growth was further investigated by whole genome sequence analysis. Strain GQYP101 comprises a circular chromosome and a linear plasmid. Some key genes of strain GQYP101 were identified that were related to phosphate solubilization, alkaline phosphatase, chemotaxis, and motility. The findings of this study may provide a theoretical basis for strain GQYP101 to enhance crop yield as microbial fertilizer.


Assuntos
Microbiota , Rizosfera , Bacillus , Bactérias/metabolismo , Nitrogênio , Fosfatos/metabolismo , Fósforo , Plântula , Solo/química , Microbiologia do Solo , Zea mays/metabolismo
10.
mSystems ; 7(2): e0142621, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35229649

RESUMO

A novel plant growth-promoting rhizobacterium (PGPR), which was designated strain BY2G20, was isolated from saline-alkaline soil in Dongying, China. Strain BY2G20 can grow at a NaCl range from 0 to 7% and a pH range from 7 to 9 and can prevent the growth of the phytopathogen Ralstonia solanacearum. Based on its phenotypic and genomic characteristics and phylogenetic analysis, strain BY2G20 represents a novel species of the genus Metabacillus, for which the name Metabacillus dongyingensis sp. nov. is proposed. Comparative genomic analysis of strain BY2G20 with its closely related species exhibited a high level of evolutionary plasticity derived by horizontal gene transfer, which facilitated adaptative evolution. Different evolutionary constraints have operated on the diverse functions of BY2G20, with the gene adapted to saline-alkaline ecosystems experiencing functional constraints. We determined the genetic properties of saline-alkaline tolerance and plant growth promotion, such as cation-proton antiporters, cation transporters, osmoprotectant synthesis and transport, H+-transporting F1F0-ATPase, indole-3-acetic acid production, and secondary metabolite synthesis. We also evaluated the effects of strain BY2G20 on the growth of Zea mays L. (maize) under salt stress. The physiological parameters of maize such as plant height, stem diameter, dry biomass, and fresh biomass were significantly higher after inoculating strain BY2G20 under salt stress, indicating that inoculation with BY2G20 enhanced the growth of maize in saline areas. This study demonstrates that M. dongyingensis sp. nov. BY2G20 is a potential candidate for organic agriculture biofertilizers in saline-alkaline areas. IMPORTANCE Plant growth and yield are adversely affected by soil salinity. PGPRs can promote plant growth and enhance plant tolerance to salt stress. In this study, a saline-alkaline tolerant PGPR strain BY2G20 was isolated from the rhizosphere of Ulmus pumila in Dongying, China. Strain BY2G20 represents a novel species within the genus Metabacillus based on phenotypic, genomic, and phylogenetic analysis. Genomic components have undergone different functional constraints, and the disparity in the evolutionary rate may be associated with the adaptation to a specific niche. Genomic analysis revealed numerous adaptive features of strain BY2G20 to a saline-alkaline environment and rhizosphere, especially genes related to salt tolerance, pH adaptability, and plant growth promotion. Our work also exhibited that inoculation of strain BY2G20 enhanced the growth of maize under salt stress. This study demonstrates that PGPRs play an important role in stimulating salt tolerance in plants and can be used as biofertilizers to enhance the growth of crops in saline-alkaline areas.


Assuntos
Solo , Zea mays , Solo/química , Ecossistema , Filogenia , Bactérias/genética , Estresse Salino
11.
J Hazard Mater ; 415: 125756, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34088210

RESUMO

Accumulation of p-hydroxybenzoic acid (PHBA) in soil causes autotoxicity stress in cucumber. When the stress is mitigated by PHBA-degrading bacteria, plant metabolites have not been detected. To explore mechanisms underlining the mitigation, plant metabolites have not been combined with rhizospheric microbes, antioxidant and soil enzymes. In this study, a strain P620 of Klebsiella decomposed PHBA to acetyl CoA. Cucumber was sown into soil supplemented with P620 and/or PHBA. After addition with P620, P620 colonization and the enriched bacterial genera were observed in rhizosphere. Compared to PHBA stress alone, the combination of P620 application and PHBA stress improved plant growth, decreased PHBA concentration in soil, and increased the activities of five soil enzymes and eight antioxidant enzymes in leaves. Metabolomic and transcriptomic analysis highlighted that P620 application decreased the intensities of MAG(18:3) isomer 4, MAG(18:3) isomer 2, lysoPC 18:3 (2n isomer), 2'-deoxyadenosine-5'-monophosphate, pyridoxine, and glucarate O-phosphoric acid in PHBA-stressed leaves and down-regulated the expression of genes related to these metabolites. We propose a mechanism that P620 application alters microbial communities in PHBA-contaminated soil. Thus, the application reduces PHBA concentration in soil, activates antioxidant and soil enzymes, and also influences metabolites in leaves by affecting plant transcriptome, mitigating PHBA stress in cucumber.


Assuntos
Cucumis sativus , Bactérias/genética , Hidroxibenzoatos , Klebsiella oxytoca , Metabolômica , Rizosfera , Solo , Microbiologia do Solo , Transcriptoma
12.
BMC Microbiol ; 21(1): 70, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33663386

RESUMO

BACKGROUND: Paenibacillus polymyxa SC2, a bacterium isolated from the rhizosphere soil of pepper (Capsicum annuum L.), promotes growth and biocontrol of pepper. However, the mechanisms of interaction between P. polymyxa SC2 and pepper have not yet been elucidated. This study aimed to investigate the interactional relationship of P. polymyxa SC2 and pepper using transcriptomics. RESULTS: P. polymyxa SC2 promotes growth of pepper stems and leaves in pot experiments in the greenhouse. Under interaction conditions, peppers stimulate the expression of genes related to quorum sensing, chemotaxis, and biofilm formation in P. polymyxa SC2. Peppers induced the expression of polymyxin and fusaricidin biosynthesis genes in P. polymyxa SC2, and these genes were up-regulated 2.93- to 6.13-fold and 2.77- to 7.88-fold, respectively. Under the stimulation of medium which has been used to culture pepper, the bacteriostatic diameter of P. polymyxa SC2 against Xanthomonas citri increased significantly. Concurrently, under the stimulation of P. polymyxa SC2, expression of transcription factor genes WRKY2 and WRKY40 in pepper was up-regulated 1.17-fold and 3.5-fold, respectively. CONCLUSIONS: Through the interaction with pepper, the ability of P. polymyxa SC2 to inhibit pathogens was enhanced. P. polymyxa SC2 also induces systemic resistance in pepper by stimulating expression of corresponding transcription regulators. Furthermore, pepper has effects on chemotaxis and biofilm formation of P. polymyxa SC2. This study provides a basis for studying interactional mechanisms of P. polymyxa SC2 and pepper.


Assuntos
Capsicum/genética , Capsicum/microbiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Paenibacillus polymyxa/fisiologia , Transcriptoma/genética , Genes de Plantas/genética , Rizosfera
13.
Front Microbiol ; 11: 522986, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193118

RESUMO

Continuous-cropping leads to obstacles in crop productivity by the accumulation of p-hydroxybenzoic acid (PHBA) and ferulic acid (FA). In this study, a strain CFA of Pseudomonas was shown to have a higher PHBA- and FA-degrading ability in media and soil and the mechanisms underlying this were explored. Optimal conditions for PHBA and FA degradation by CFA were 0.2 g/l of PHBA and FA, 37°C, and pH 6.56. Using transcriptome analysis, complete pathways that converted PHBA and FA to acetyl coenzyme A were proposed in CFA. When CFA was provided with PHBA and FA, we observed upregulation of genes in the pathways and detected intermediate metabolites including vanillin, vanillic acid, and protocatechuic acid. Moreover, 4-hydroxybenzoate 3-monooxygenase and vanillate O-demethylase were rate-limiting enzymes by gene overexpression. Knockouts of small non-coding RNA (sRNA) genes, including sRNA 11, sRNA 14, sRNA 20, and sRNA 60, improved the degradation of PHBA and FA. When applied to cucumber-planted soil supplemented with PHBA and FA, CFA decreased PHBA and FA in soil. Furthermore, a reduction of superoxide radical, hydrogen peroxide, and malondialdehyde in cucumber was observed by activating superoxide dismutase, catalase, glutathione peroxidase, ascorbate peroxidase, glutathione reductase, dehydroascorbate reductase, and monodehydroascorbate reductase in seedlings, increasing the reduced glutathione and ascorbate in leaves, and inducing catalase, urease, and phosphatase in the rhizosphere. CFA has potential to mitigate PHBA and FA stresses in cucumber and alleviate continuous-cropping obstacles.

14.
Front Microbiol ; 11: 584174, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101258

RESUMO

Paenibacillus polymyxa is an important member of the plant growth-promoting rhizobacteria. P. polymyxa YC0136 inoculation had beneficial effect on growth promotion and biological control of tobacco (Nicotiana tabacum L.) under field conditions. This study aimed to reveal the growth-promoting mechanisms of strain YC0136. In growth-promotion assays, tobacco plant height was increased by 8.42% and 8.25% at 60 and 90 days, respectively, after inoculation with strain YC0136. Strain YC0136 also promoted the accumulation of tobacco biomass in varying degrees. Following inoculation with strain YC0136, 3,525 and 4,368 tobacco genes were up-regulated and down-regulated, respectively. Strain YC0136 induced the expression of plant hormone-related genes in tobacco, including auxin, cytokinin, and gibberellin, as well as transcription factors related to stress resistance such as WRKY and MYB. In addition, strain YC0136 induced the up-regulation of genes in the phenylpropanoid biosynthesis pathway by 1.51-4.59 times. Interaction with tobacco also induced gene expression changes in strain YC0136, with 286 and 223 genes up-regulated and down-regulated, respectively. Tobacco interaction induced up-regulation of the ilvB gene related to auxin biosynthesis in strain YC0136 by 1.72 times and induced expression of some nutrient transport genes. This study contributes to our understanding of the growth-promoting mechanisms of strain YC0136 on tobacco and provides a theoretical basis for the application of P. polymyxa YC0136 as a biological fertilizer.

15.
Int J Mol Sci ; 21(15)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32718035

RESUMO

Serotyping has traditionally been considered the basis for surveillance of Salmonella, but it cannot distinguish distinct lineages sharing the same serovar that vary in host range, pathogenicity and epidemiology. However, polyphyletic serovars have not been extensively investigated. Public health microbiology is currently being transformed by whole-genome sequencing (WGS) data, which promote the lineage determination using a more powerful and accurate technique than serotyping. The focus in this study is to survey and analyze putative polyphyletic serovars. The multi-locus sequence typing (MLST) phylogenetic analysis identified four putative polyphyletic serovars, namely, Montevideo, Bareilly, Saintpaul, and Muenchen. Whole-genome-based phylogeny and population structure highlighted the polyphyletic nature of Bareilly and Saintpaul and the multi-lineage nature of Montevideo and Muenchen. The population of these serovars was defined by extensive genetic diversity, the open pan genome and the small core genome. Source niche metadata revealed putative existence of lineage-specific niche adaptation (host-preference and environmental-preference), exhibited by lineage-specific genomic contents associated with metabolism and transport. Meanwhile, differences in genetic profiles relating to virulence and antimicrobial resistance within each lineage may contribute to pathogenicity and epidemiology. The results also showed that recombination events occurring at the H1-antigen loci may be an important reason for polyphyly. The results presented here provide the genomic basis of simple, rapid, and accurate identification of phylogenetic lineages of these serovars, which could have important implications for public health.


Assuntos
DNA Bacteriano , Genoma Bacteriano , Tipagem de Sequências Multilocus , Filogenia , Infecções por Salmonella/genética , Salmonella/genética , Humanos , Vigilância em Saúde Pública , Salmonella/isolamento & purificação , Sorogrupo , Sequenciamento Completo do Genoma
16.
PeerJ ; 8: e9024, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32377450

RESUMO

Soil sickness is the progressive loss of soil quality due to continuous monocropping. The bacterial populations are critical to sustaining agroecosystems, but their responses to long-term peanut monocropping have not been determined. In this study, based on a previously constructed gradient of continuous monocropped plots, we tracked the detailed feedback responses of soil bacteria to short- and long-term continuous monocropping of four different peanut varieties using high-throughput sequencing techniques. The analyses showed that soil samples from 1- and 2-year monocropped plots were grouped into one class, and samples from the 11- and 12-year plots were grouped into another. Long-term consecutive monocropping could lead to a general loss in bacterial diversity and remarkable changes in bacterial abundance and composition. At the genera level, the dominant genus Bacillus changed in average abundance from 1.49% in short-term monocropping libraries to 2.96% in the long-term libraries. The dominant species Bacillus aryabhattai and Bacillus funiculus and the relatively abundant species Bacillus luciferensis and Bacillus decolorationis all showed increased abundance with long-term monocropping. Additionally, several other taxa at the genus and species level also presented increased abundance with long-term peanut monocropping; however, several taxa showed decreased abundance. Comparing analyses of predicted bacterial community functions showed significant changes at different KEGG pathway levels with long-term peanut monocropping. Combined with our previous study, this study indicated that bacterial communities were obviously influenced by the monocropping period, but less influenced by peanut variety and growth stage. Some bacterial taxa with increased abundance have functions of promoting plant growth or degrading potential soil allelochemicals, and should be closely related with soil remediation and may have potential application to relieve peanut soil sickness. A decrease in diversity and abundance of bacterial communities, especially beneficial communities, and simplification of bacterial community function with long-term peanut monocropping could be the main cause of peanut soil sickness.

17.
J Microbiol ; 58(7): 563-573, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32329018

RESUMO

Balancing soil microbial diversity and abundance is critical to sustaining soil health, and understanding the dynamics of soil microbes in a monocropping system can help determine how continuous monocropping practices induce soil sickness mediated by microorganisms. This study used previously constructed gradient continuous monocropping plots and four varieties with different monocropping responses were investigated. The feedback responses of their soil fungal communities to short-term and long-term continuous monocropping were tracked using high-throughput sequencing techniques. The analyses indicated that soil samples from 1 and 2 year monocropped plots were grouped into one class, and samples from the 11 and 12 year plots were grouped into another, regardless of variety. At the species level, the F. solani, Fusarium oxysporum, Neocosmospora striata, Acrophialophora levis, Aspergillus niger, Aspergillus corrugatus, Thielavia hyrcaniae, Emericellopsis minima, and Scedosporium aurantiacum taxa showed significantly increased abundances in the long-term monocropping libraries compared to the short-term cropping libraries. In contrast, Talaromyces flavus, Talaromyces purpureogenus, Mortierella alpina, Paranamyces uniporus, and Volutella citrinella decreased in the long-term monocropping libraries compared to the short-term libraries. This study, combined with our previous study, showed that fungal community structure was significantly affected by the length of the monocropping period, but peanut variety and growth stages were less important. The increase in pathogen abundances and the decrease in beneficial fungi abundances seem to be the main cause for the yield decline and poor growth of long-term monocultured peanut. Simplification of fungal community diversity could also contribute to peanut soil sickness under long-term monocropping. Additionally, the different responses of peanut varieties to monocropping may be related to variations in their microbial community structure.


Assuntos
Arachis/metabolismo , Fungos/classificação , Micobioma/fisiologia , Solo/química , Agricultura/métodos , Fungos/genética , Fungos/isolamento & purificação , Microbiologia do Solo
18.
BMC Genomics ; 20(1): 283, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30975079

RESUMO

BACKGROUND: Members of the genus Bacillus are important plant growth-promoting rhizobacteria that serve as biocontrol agents. Bacillus paralicheniformis MDJK30 is a PGPR isolated from the peony rhizosphere and can suppress plant-pathogenic bacteria and fungi. To further uncover the genetic mechanism of the plant growth-promoting traits of MDJK30 and its closely related strains, we used comparative genomics to provide insights into the genetic diversity and evolutionary relationship between B. paralicheniformis and B. licheniformis. RESULTS: A comparative genomics analysis based on B. paralicheniformis MDJK30 and 55 other previously reported Bacillus strains was performed. The evolutionary position of MDJK30 and the evolutionary relationship between B. paralicheniformis and B. licheniformis were evaluated by studying the phylogeny of the core genomes, a population structure analysis and ANI results. Comparative genomic analysis revealed various features of B. paralicheniformis that contribute to its commensal lifestyle in the rhizosphere, including an opening pan genome, a diversity of transport and the metabolism of the carbohydrates and amino acids. There are notable differences in the numbers and locations of the insertion sequences, prophages, genomic islands and secondary metabolic synthase operons between B. paralicheniformis and B. licheniformis. In particular, we found most gene clusters of Fengycin, Bacitracin and Lantipeptide were only present in B. paralicheniformis and were obtained by horizontal gene transfer (HGT), and these clusters may be used as genetic markers for distinguishing B. paralicheniformis and B. licheniformis. CONCLUSIONS: This study reveals that MDJK30 and the other strains of lineage paralicheniformis present plant growth-promoting traits at the genetic level and can be developed and commercially formulated in agriculture as PGPR. Core genome phylogenies and population structure analysis has proven to be a powerful tool for differentiating B. paralicheniformis and B. licheniformis. Comparative genomic analyses illustrate the genetic differences between the paralicheniformis-licheniformis group with respect to rhizosphere adaptation.


Assuntos
Bacillus/genética , Evolução Molecular , Genômica , Adaptação Fisiológica/genética , Bacillus/metabolismo , Bacillus/fisiologia , Família Multigênica/genética , Filogenia
19.
Artigo em Inglês | MEDLINE | ID: mdl-30834364

RESUMO

Bacillus velezensis DSYZ is a plant growth-promoting rhizobacterium with the capacity to control fungal pathogens. It was isolated from the rhizosphere soil of garlic. Here, we present the complete genome sequence of B. velezensis DSYZ. Several gene clusters that are related to the biosynthesis of antimicrobial compounds were predicted.

20.
J Biotechnol ; 295: 19-27, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30831123

RESUMO

Paenibacillus polymyxa is a rhizobacterium that has attracted substantial attention due to its ability to produce functional metabolites and promote plant growth. Metabolic and genetic improvements in this species will benefit research and other applications of the bacterium. However, a suitable gene expression system has not been established in this species. In this study, a promoter trap system based on a green fluorescent protein and a chloramphenicol-resistance gene was developed to isolate native promoters of P. polymyxa SC2-M1 to regulate gene expression. Through high-throughput screening, the novel promoter PLH-77 was identified, sequenced, and subsequently characterized. Promoter PLH-77 is a strong, continuous expression system containing the typical -10 and -35 motifs regions. Its effective sequence was evaluated and then cascaded to improve the promotion efficiency. To further verify the existence of PLH-77, a heterogenous xylose isomerase was expressed by PLH-77 in P. polymyxa SC2-M1. In the resulting strain, the amount of xylose consumed was increased by 2.5 g/L during the 78 h fermentation period. Meanwhile, the production levels of lactate and acetate increased. It was confirmed that promoter PLH-77 could effectively mediate gene expression in P. polymyxa SC2-M1 and will further benefit the quantitative monitoring of gene expression in P. polymyxa.


Assuntos
Engenharia Metabólica/métodos , Paenibacillus polymyxa/genética , Paenibacillus polymyxa/metabolismo , Regiões Promotoras Genéticas/genética , Clonagem Molecular , Expressão Gênica/genética , Plasmídeos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA