Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 49(3): 671-680, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621871

RESUMO

Traditional Chinese medicine is precious treasure of ancient Chinese science and a key to unlocking the treasure trove of Chinese civilization. To elucidate the efficacy and mechanism of traditional Chinese medicines, scientists have been engaged in the research on the molecular basis and regulatory targets. Molecular docking is a computer-aided drug design method capable of visualizing the interaction between components and target proteins. With the progress in the modernization of traditional Chinese medicine and the advancement of algorithms and computing power, molecular docking has become an essential approach in the development of new traditional Chinese medicines. This article summarizes the recent research progress in molecular docking in the development of traditional Chinese medicine, aiming to provide valuable references for further screening of active components and offering insights for improving the development of new traditional Chinese medicines.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular
2.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38399457

RESUMO

Black Phosphorus (BP) is a new semiconductor material with excellent biocompatibility, degradability, and optical and electrophysical properties. A growing number of studies show that BP has high potential applications in the biomedical field. This article aims to systematically review the research progress of BP composite medical materials in the field of tissue engineering, mining BP in bone regeneration, skin repair, nerve repair, inflammation, treatment methods, and the application mechanism. Furthermore, the paper discusses the shortcomings and future recommendations related to the development of BP. These shortcomings include stability, photothermal conversion capacity, preparation process, and other related issues. However, despite these challenges, the utilization of BP-based medical materials holds immense promise in revolutionizing the field of tissue repair.

3.
Animals (Basel) ; 14(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38254459

RESUMO

The aim of this study is to identify an alternative approach for simulating the in vitro fermentation and quantifying the production of rumen methane and rumen acetic acid during the rumen fermentation process with different total mixed rations. In this experiment, dietary nutrient compositions (neutral detergent fiber (NDF), acid detergent fiber (ADF), crude protein (CP), and dry matter (DM)) were selected as input parameters to establish three prediction models for rumen fermentation parameters (methane and acetic acid): an artificial neural network model, a genetic algorithm-bp model, and a support vector machine model. The research findings show that the three models had similar simulation results that aligned with the measured data trends (R2 ≥ 0.83). Additionally, the root mean square errors (RMSEs) were ≤1.85 mL/g in the rumen methane model and ≤2.248 mmol/L in the rumen acetic acid model. Finally, this study also demonstrates the models' capacity for generalization through an independent verification experiment, as they effectively predicted outcomes even when significant trial factors were manipulated. These results suggest that machine learning-based in vitro rumen models can serve as a valuable tool for quantifying rumen fermentation parameters, guiding the optimization of dietary structures for dairy cows, rapidly screening methane-reducing feed options, and enhancing feeding efficiency.

4.
Heliyon ; 9(12): e22116, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38076161

RESUMO

Many metabolic diseases have been demonstrated to be associated with changes in the microbiome. However, no studies have yet been conducted to examine the characteristics of the mucosal microbiota of patients with hypercholesterolemia. We aimed to examine mucosa-associated microbiota in subjects with hypercholesterolemia. We conducted a case-control study, in which ileal mucosal samples were collected from 13 hypercholesterolemia patients and 13 controls for 16S rRNA gene sequencing. There were differences in the composition of ileal mucosal microbiota based on beta diversity between the hypercholesterolemia and control groups (P < 0.05). Compared with the control group, the phylum Bacteroidetes and the genera Bacteroides, Butyricicoccus, Parasutterella, Candidatus_Soleaferrea, and norank_f__norank_o__Izemoplasmatales were less abundant in the hypercholesterolemia group (P < 0.05), while the genus Anaerovibrio was enriched in the hypercholesterolemia group (P < 0.05). The relative abundance of Bacteroides was negatively correlated with total cholesterol and low-density lipoprotein cholesterol (P < 0.01). The relative abundance of Coprococcus was negatively correlated with triglycerides and body mass index (all P < 0.05). PICRUSt functional prediction analysis showed that pathways related to Glycerophospholipid metabolism, ABC transporters, Phosphotransferase system, and Biofilm formation - Escherichia coli, and infectious diseases of pathogenic Escherichia coli were enriched in the hypercholesterolemia group. This work suggests a potential role of ileal mucosal microbiota in the development of hypercholesterolemia.

5.
BMC Complement Med Ther ; 23(1): 449, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087272

RESUMO

BACKGROUND: Respiratory Syncytial Virus (RSV) stands out as a primary contributor to lower respiratory tract infections and hospitalizations, particularly in infants. Lonicerae japonicae flos (LJF), a traditional Chinese medicine renowned for its efficacy against various viral infections, including RSV, has been widely employed. Despite its common use, the precise therapeutic mechanism of LJF against RSV remains elusive. This study aimed to investigate the underlying mechanism of LJF against RSV through network pharmacology and metabolomics. METHODS: In this study, based on network pharmacology, potential targets related to LJF and RSV were obtained from PubChem and Swiss Target Prediction. The core targets and pathways were established and verified by enrichment analysis and molecular docking. The anti-RSV efficacy of LJF was determined by in vitro experiments. Additionally, metabolomics analysis was integrated, allowing for the identification of differential metabolites and their correlation with targets following LJF treatment in the context of RSV infection. RESULTS: A total of 23 active ingredients and 780 targets were obtained, of which 102 targets were associated with LJF anti-RSV. The construction of the corresponding Protein-Protein Interaction (PPI) network unveiled potential core targets, including STAT3, TNF, and AKT1. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that LJF's anti-RSV effects primarily involve key pathways such as the PI3K-Akt signaling pathway, EGFR tyrosine kinase inhibitor resistance, and FoxO signaling pathway. Molecular docking showed that ZINC03978781, 4,5'-Retro-.beta.,.beta.-Carotene -3,3'-dione, 4',5'-didehydro and 7-epi-Vogeloside had better binding ability. The cellular assay showed that the therapeutic index of LJF against RSV was 4.79. Furthermore, 18 metabolites were screened as potential biomarkers of LJF against RSV, and these metabolites were mainly involved in the pathways of purine metabolism, linoleic acid metabolism, alpha-linolenic acid metabolism, and other related pathways. CONCLUSIONS: The intergration of network pharmacology and metabolomics can clarify the active targets and related pathways of LJF against RSV, which could provide a valuable reference for further research and clinical application of LJF.


Assuntos
Farmacologia em Rede , Vírus Sinciciais Respiratórios , Lactente , Humanos , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Metabolômica
6.
Genes (Basel) ; 14(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38136987

RESUMO

The rice leaf folder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae), is a notorious pest of rice in Asia. The larvae and adults of C. medinalis utilize specialized chemosensory systems to adapt to different environmental odors and physiological behaviors. However, the differences in chemosensory genes between the olfactory organs of these two different developmental stages remain unclear. Here, we conducted a transcriptome analysis of larvae heads, male antennae, and female antennae in C. medinalis and identified 131 putative chemosensory genes, including 32 OBPs (8 novel OBPs), 23 CSPs (2 novel CSPs), 55 ORs (17 novel ORs), 19 IRs (5 novel IRs) and 2 SNMPs. Comparisons between larvae and adults of C. medinalis by transcriptome and RT-qPCR analysis revealed that the number and expression of chemosensory genes in larval heads were less than that of adult antennae. Only 17 chemosensory genes (7 OBPs and 10 CSPs) were specifically or preferentially expressed in the larval heads, while a total of 101 chemosensory genes (21 OBPs, 9 CSPs, 51 ORs, 18 IRs, and 2 SNMPs) were specifically or preferentially expressed in adult antennae. Our study found differences in chemosensory gene expression between larvae and adults, suggesting their specialized functions at different developmental stages of C. medinalis. These results provide a theoretical basis for screening chemosensory genes as potential molecular targets and developing novel management strategies to control C. medinalis.


Assuntos
Mariposas , Transcriptoma , Animais , Feminino , Masculino , Transcriptoma/genética , Larva/genética , Perfilação da Expressão Gênica , Mariposas/genética , Ásia
7.
MethodsX ; 11: 102450, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38023301

RESUMO

The mechanical-double enzyme method was used in the current study to isolate and culture primary chondrocytes from the chicken growth plates. The feasibility and practicability of the approach were determined by using trypan blue staining, toluidine blue staining, PCR, and flow cytometry. The immunofluorescence assay was also used to effectively identify chondrocytes, demonstrating the expression of chondrocyte-specific secreted products (Col-II and Aggrecan). The exterior morphology of chondrocytes was studied at several stages, revealing significant changes in cell shape with each generation. Notably, compared to earlier approaches, the mechanical-double enzyme strategy revealed enhanced cell adhesion and much reduced apoptosis rates. The findings indicate that this novel method has great potential for efficient primary chondrocytes culture, providing important insight into chondrocyte ba research and future applications in cartilage tissue engineering. The following technical points are included in this method:•Isolation and culturing primary chondrocytes by a mechanical-double enzyme approach.•The evaluation of cell adhesion and apoptosis of mechanical double enzyme approach as compared to previous approaches.•The confirmation of chondrocyte-specific secreted products' expression via toluidine blue staining, PCR, and immunofluorescence assays.

8.
Front Public Health ; 11: 1221852, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869190

RESUMO

Background: Due to environmental pollution, changes in lifestyle, and advancements in diagnostic technology, the prevalence of asthma has been increasing over the years. Although China has made early efforts in asthma epidemiology and prevention, there is still a lack of unified and comprehensive epidemiological research within the country. The objective of the study is to determine the nationwide prevalence distribution of asthma using the Baidu Index and China's Health Statistical Yearbook. Methods: Based on China's Health Statistical Yearbook, we analyzed the gender and age distribution of asthma in China from 2011 to 2020, as well as the length of hospitalization and associated costs. By utilizing the Baidu Index and setting the covering all 31 provinces and autonomous regions in China, we obtained the Baidu Index for the keyword 'asthma'. Heatmaps and growth ratios described the prevalence and growth of asthma in mainland China. Results: The average expenditure for discharged asthma (standard deviation) patients was ¥5,870 (808). The average length of stay (standard deviation) was 7.9 (0.38) days. During the period of 2011 to 2020, hospitalization expenses for asthma increased while the length of hospital stay decreased. The proportion of discharged patients who were children under the age of 5 were 25.3% (2011), 19.4% (2012), 16% (2013), 17.9% (2014), 13.9% (2015), 11.3% (2016), 10.2% (2017), 9.4% (2018), 8.1% (2019), and 7.2% (2020), respectively. The prevalence of asthma among boys was higher than girls before the age of 14. In contrast, the proportion of women with asthma was larger than men after the age of 14. During the period from 2011 to 2020, the median [The first quartile (Q1)-the third quartile (Q3)] daily asthma Baidu index in Guangdong, Beijing, Jiangsu, Sichuan, and Zhejiang were 419 (279-476), 328 (258-376), 315 (227-365), 272 (166-313), and 312 (233-362) respectively. Coastal regions showed higher levels of attention toward asthma, indicating a higher incidence rate. Since 2014, there has been a rapid increase in the level of attention toward asthma, with the provinces of Qinghai, Sichuan, and Guangdong experiencing the fastest growth. Conclusion: There are regional variations in the prevalence of asthma among different provinces in China, and the overall prevalence of asthma is increasing.


Assuntos
Asma , Hospitalização , Masculino , Criança , Humanos , Feminino , Prevalência , China/epidemiologia , Distribuição por Idade , Asma/epidemiologia
9.
J Hazard Mater ; 459: 132214, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37544174

RESUMO

Copper (Cu) is vital for plant growth but becomes toxic in excess, posing potential threats to human health. Although receptor-like kinases (RLKs) have been studied in plant response to abiotic stresses, their roles in Cu stress response remain poorly understood. Therefore, we aimed to evaluate Cu toxicity effects on rice and elucidate its potential molecular mechanisms. Specifically, rice lectin-type RLK OsCORK1 (Copper-response receptor-like kinase 1) function in Cu stress response was investigated. RNA sequencing and expression assays revealed that OsCORK1 is mainly expressed in roots and leaves, and its expression was significantly induced by Cu stress time- and dose-dependently. Kinase activity assays demonstrated OsCORK1 as a Mn2+-preferred functional kinase. Genetically, OsCORK1 gene-edited mutants exhibited increased tolerance to Cu stress and reduced Cu accumulation compared to the wild type (WT). Conversely, OsCORK1 overexpression compromised the Cu stress tolerance observed in OsCORK1 gene-edited mutants. OsCORK1 gene-edited mutants slightly damaged the root tips compared to the WT under Cu stress. Furthermore, OsCORK1 was demonstrated to modulate Cu stress tolerance by mainly altering cell wall components, particularly lignin, in rice. Overall, OsCORK1 is an important negative regulator of Cu stress tolerance, providing a potential gene target to reduce Cu pollution in rice production.


Assuntos
Cobre , Oryza , Humanos , Cobre/toxicidade , Cobre/metabolismo , Oryza/metabolismo , Lectinas/genética , Lectinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
10.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446153

RESUMO

There is evidence to suggest that microRNA-140-5p (miR-140), which acts as a suppressor, is often elevated and has a role in various malignancies. Nevertheless, neither the function nor the mechanisms in chondrocytes linked with bone disorders, e.g., tibial dyschondroplasia (TD), have been satisfactorily established. The purpose of this study was to look into the role of microRNA-140-5p (miR-140) and its interaction with HDAC4 in chondrocytes, as well as the implications for tibial dyschondroplasia (TD), with a particular focus on the relationship between low miR-140 expression and poor pathologic characteristics, as well as its physiological effects on chondrocyte growth, differentiation, and chondrodysplasia. In this investigation, we discovered that TD had a reduced expression level of the miR-140. There was a correlation between low miR-140 expression, poor pathologic characteristics, and the short overall survival of chondrocytes. Our findings show an aberrant reduction in miR-140 expression, and HDAC4 overexpression caused disengagement in resting and proliferation zones. This further resulted in uncontrolled cell proliferation, differentiation, and chondrodysplasia. Mechanistically, HDAC4 inhibited the downstream transcription factors MEF2C and Runx2 and interacted with Col-Ⅱ, Col-X, and COMP. However, miR-140 binding to the 3'-UTR of HDAC4 resulted in the growth and differentiation of chondrocytes. Moreover, the expression of HDAC4 through LMK-235 was significantly decreased, and the expression was significantly increased under ITSA-1, referring to a positive feedback circuit of miR-140 and HDAC4 for endochondral bone ossification. Furthermore, as a prospective treatment, the flavonoids of Rhizoma drynariae (TFRD) therapy increased the expression of miR-140. Compared to the TD group, TFRD treatment increased the expression of growth-promoting and chondrocyte differentiation markers, implying that TFRD can promote chondrocyte proliferation and differentiation in the tibial growth plate. Hence, directing this circuit may represent a promising target for chondrocyte-related bone disorders and all associated pathological bone conditions.


Assuntos
MicroRNAs , Osteocondrodisplasias , Humanos , Condrócitos/metabolismo , Tiram , Osteocondrodisplasias/metabolismo , Diferenciação Celular/genética , MicroRNAs/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Proteínas Repressoras/metabolismo
11.
BMC Musculoskelet Disord ; 24(1): 609, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491198

RESUMO

PURPOSE: Steroid-induced necrosis of the femoral head (SONFH) is a refractory orthopedic hip disease occurring in young and middle-aged people, with glucocorticoids being the most common cause. Previous experimental studies have shown that cell pyroptosis may be involved in the pathological process of SONFH, but its pathogenesis in SONFH is still unclear. This study aims to screen and validate potential pyroptosis-related genes in SONFH diagnosis by bioinformatics analysis to further elucidate the mechanism of pyroptosis in SONFH. METHODS: There were 33 pyroptosis-related genes obtained from the prior reviews. The mRNA expression was downloaded from GSE123568 dataset in the Gene Expression Omnibus (GEO) database, including 10 non-SONFH (following steroid administration) samples and 30 SONFH samples. The pyroptosis-related differentially expressed genes involved in SONFH were identified with "affy" and "limma" R package by intersecting the GSE123568 dataset with pyroptosis genes. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the pyroptosis-related differentially expressed genes involved in SONFH were conducted by "clusterProfiler" R package and visualized by "GOplot" R package. Then, the correlations between the expression levels of the pyroptosis-related differentially expressed genes involved in SONFH were confirmed with "corrplot" R package. Moreover, the protein-protein interaction (PPI) network was analysed by using GeneMANIA database. Next, The ROC curve of pyroptosis-related differentially expressed genes were analyzed by "pROC" R package. RESULTS: A total of 10 pyroptosis-related differentially expressed genes were identified between the peripheral blood samples of SONFH patients and non-SONFH patients based on the defined criteria, including 20 upregulated genes and 10 downregulated genes. The GO and KEGG pathway enrichment analyses revealed that these 10 pyroptosis-related differentially expressed genes involved in SONFH were particularly enriched in cysteine-type endopeptidase activity involved in apoptotic process, positive regulation of interleukin-1 beta secretion and NOD-like receptor signaling pathway. Correlation analysis revealed significant correlations among the 10 differentially expressed pyroptosis-related genes involved in SONFH. The PPI results demonstrated that the 10 pyroptosis-related differentially expressed genes interacted with each other. Compared to non-SONFH samples, these pyroptosis-related differentially expressed genes had good predictive diagnostic efficacy (AUC = 1.000, CI = 1.000-1.000) in the SONFH samples, and NLRP1 had the highest diagnostic value (AUC: 0.953) in the SONFH samples. CONCLUSIONS: There were 10 potential pyroptosis-related differentially expressed genes involved in SONFH were identified via bioinformatics analysis, which might serve as potential diagnostic biomarkers because they regulated pyroptosis. These results expand the understanding of SONFH associated with pyroptosis and provide new insights to further explore the mechanism of action and diagnosis of pyroptosis associated in SONFH.


Assuntos
Cabeça do Fêmur , Osteonecrose , Pessoa de Meia-Idade , Humanos , Cabeça do Fêmur/metabolismo , Piroptose , Osteonecrose/induzido quimicamente , Osteonecrose/genética , Esteroides/efeitos adversos , Necrose , Biologia Computacional/métodos , Biomarcadores/metabolismo
12.
Sensors (Basel) ; 23(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37299801

RESUMO

Satellite-ground integrated networks (SGIN) are in line with 6th generation wireless network technology (6G) requirements. However, security and privacy issues are challenging with heterogeneous networks. Specifically, although 5G authentication and key agreement (AKA) protects terminal anonymity, privacy preserving authentication protocols are still important in satellite networks. Meanwhile, 6G will have a large number of nodes with low energy consumption. The balance between security and performance needs to be investigated. Furthermore, 6G networks will likely belong to different operators. How to optimize the repeated authentication during roaming between different networks is also a key issue. To address these challenges, on-demand anonymous access and novel roaming authentication protocols are presented in this paper. Ordinary nodes implement unlinkable authentication by adopting a bilinear pairing-based short group signature algorithm. When low-energy nodes achieve fast authentication by utilizing the proposed lightweight batch authentication protocol, which can protect malicious nodes from DoS attacks. An efficient cross-domain roaming authentication protocol, which allows terminals to quickly connect to different operator networks, is designed to reduce the authentication delay. The security of our scheme is verified through formal and informal security analysis. Finally, the performance analysis results show that our scheme is feasible.


Assuntos
Segurança Computacional , Privacidade , Tecnologia sem Fio , Algoritmos
13.
Food Sci Nutr ; 11(1): 364-378, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36655085

RESUMO

In this study, TCA-n-butanol was chosen as the best deproteinization method for Lonicera japonica polysaccharide (LJP) by comparing the polysaccharide retention rate and the protein clearance rate of five different methods. The response surface methodology (RSM) based on the Box-Behnken design (BBD) was used to optimize the deproteinization conditions as follows: TCA: n-butanol = 1: 5.1, polysaccharide solution: (TCA-n-butanol) = 1: 2.8, and shook for 33 min. LJP could promote the thymus and spleen indexes of cyclophosphamide (CTX)-induced immune-deficient mice. Besides, the contents of cytokine interleukin-2 (IL-2) and hemolysin in mice serum were augmented after treatment with LJP. Based on serum metabolomics analysis, a total of 14 metabolites (VIP >1.0, FC >2 or FC <0.5, and p value < .05) were selected as the potential biological biomarkers related to the LJP for treating CTX-induced mice. After the pathway enrichment analysis, these metabolites were mainly involved in the relevant pathways of arginine biosynthesis, Citrate cycle, and other metabolic pathways. Network pharmacology further showed that there were 57 key targeting proteins in the intersection of the potential biological biomarkers and immunodeficiency-related targeting proteins according to protein-protein interactions analysis (PPI). The biological function analysis indicated that the potential biological processes were mainly associated with tricarboxylic acid (TCA) cycle, phospholipid metabolic process, metabolic process, and so on. In conclusion, serum metabolomics combined with network pharmacology could be helpful to clarify the immunomodulatory mechanism of LJP and provide a literature basis for further clinical research on the therapeutic mechanism of LJP.

14.
New Phytol ; 237(5): 1826-1842, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36440499

RESUMO

Previous studies have reported that PID2, which encodes a B-lectin receptor-like kinase, is a key gene in the resistance of rice to Magnaporthe oryzae strain ZB15. However, the PID2-mediated downstream signalling events remain largely unknown. The U-box E3 ubiquitin ligase OsPIE3 (PID2-interacting E3) was isolated and confirmed to play key roles in PID2-mediated rice blast resistance. Yeast two-hybrid analysis showed that the armadillo repeat region of OsPIE3 is required for its interaction with PID2. Further investigation demonstrated that OsPIE3 can modify the subcellular localisation of PID2, thus promoting its nuclear recruitment from the plasma membrane for protein degradation in the ubiquitin-proteasome system. Site-directed mutagenesis of a conserved cysteine site (C230S) within the U-box domain of OsPIE3 reduces PID2 translocation and ubiquitination. Genetic analysis suggested that OsPIE3 loss-of-function mutants exhibited enhanced resistance to M. oryzae isolate ZB15, whereas mutants with overexpressed OsPIE3 exhibited reduced resistance. Furthermore, the OsPIE3/PID2-double mutant displayed a similar blast phenotype to that of the PID2 single mutant, suggesting that OsPIE3 is a negative regulator and functions along with PID2 in blast disease resistance. Our findings confirm that the E3 ubiquitin ligase OsPIE3 is necessary for PID2-mediated rice blast disease resistance regulation.


Assuntos
Resistência à Doença , Oryza , Resistência à Doença/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Lectinas/metabolismo , Proteínas de Plantas/metabolismo , Ubiquitinação , Oryza/metabolismo , Doenças das Plantas
15.
Artigo em Inglês | MEDLINE | ID: mdl-35911158

RESUMO

Objective: Forsythia suspensa leaf (FSL) has been used as a health tea in China for centuries. Previous experiments have proved that FSL extract has a good effect on the antirespiratory syncytial virus (RSV) in vitro, but its exact mechanism is not clear. Therefore, this study aims to determine the active components and targets of FSL and further explore its anti-RSV mechanism. Methods: UPLC-Q-Exactive-MS was used to analyze the main chemical components of FSL. The compound disease target network, PPI, GO, and KEGG were used to obtain key targets and potential ways. Then, the molecular docking was verified by Schrödinger Maestro software. Next, the cell model of RSV infection was established, and the inhibitory effect of each drug on RSV was detected. Finally, western blotting was used to detect the effect of the active components of FSL on the expression of PI3K/AKT signaling pathway-related protein. Results: UPLC-Q-Exactive-MS analysis showed that there were 67 main chemical constituents in FSL, while network pharmacological analysis showed that there were 169 anti-RSV targets of the active components in FSL, involving 177 signal pathways, among which PI3K/AKT signal pathway played an important role in the anti-RSV process of FSL. The results of molecular docking showed that cryptochlorogenic acid, phillyrin, phillygenin, rutin, and rosmarinic acid had higher binding activities to TP53, STAT3, MAPK1, AKT1, and MAPK3, respectively. In vitro experiments showed that phillyrin and rosmarinic acid could effectively improve the survival rate of RSV-infected cells, increase the expression level of PI3K, and decrease the expression level of AKT. Conclusion: The active ingredients of FSL, phillyrin, and rosmarinic acid can play an anti-RSV role by inhibiting PI3K/AKT signaling pathway. This study provides reliable theoretical and experimental support for the anti-RSV treatment of FSL.

16.
Phytomedicine ; 104: 154296, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35809377

RESUMO

BACKGROUND: Apoptosis is thought to be involved in all processes, including normal cell cycle, immune system, atrophy, embryonic development, and chemical-induced cellular damage. However, if the normal apoptotic process fails, the results might be disastrous, e.g., chondrocytes damage in tibial dyschondroplasia (TD). TD is a worldwide issue in the poultry sector due to thiram toxicity. Thiram (Tetramethyl thiuram disulfide) is a dithiocarbamate pesticide and fungicide commonly used in horticulture to treat grains meant for seed protection and preservation. PURPOSE: According to prior studies, chlorogenic acid (CGA) is becoming essential for regulating apoptosis. But still, the specific role of CGA in chondrocyte cells remains unclear. The present study explored the molecular mechanism of CGA on chondrocytes' apoptosis with B-cell lymphoma 2 signaling under the effect of miR-460a. METHODS: An in vivo and in vitro study was performed according to our previously developed methodology. Flow cytometry, western blotting, reverse transcription-quantitative polymerase chain reaction, and immunofluorescence assay were used to investigate the involvement of apoptosis and inflammasome related pathways. RESULTS: The CGA decreased the apoptosis rate with the deactivation of miR-460a, accompanied by the activation of Bcl-2. The high expression of miR-460a reduced the cell viability of chondrocytes in vitro and in vivo, that led to the interleukin-1ß production. While the apoptotic executioners (caspase-3 and caspase-7) acted upstream in miR-460a overexpressing cells, and its depletion downgraded these executioners. The CGA administrated cells negatively regulated miR-460a expression and thus indicating the deactivation of the apoptotic and inflammasome related pathways. CONCLUSION: Chlorogenic acid had a negative effect on miR-460a, setting off specific feedback to regulate apoptotic and inflammasome pathways, which might be a key feature for chondrocytes' survival.


Assuntos
MicroRNAs , Osteocondrodisplasias , Apoptose , Caspase 3/metabolismo , Caspase 7/metabolismo , Ácido Clorogênico/farmacologia , Ácido Clorogênico/uso terapêutico , Condrócitos , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteocondrodisplasias/induzido quimicamente , Osteocondrodisplasias/tratamento farmacológico , Osteocondrodisplasias/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Tiram/efeitos adversos , Tiram/metabolismo
17.
Drug Des Devel Ther ; 16: 265-278, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35115762

RESUMO

BACKGROUND: Agarwood, as a traditional Chinese medicine, has great potential value for the treatment of tranquilization. However, its potential mechanisms and biomarkers are still unclear. METHODS: In this study, ultra-high performance liquid chromatography-quadrupole-Exactive Orbitrap mass spectrometry (UHPLC-Q-Exactive Orbitrap-MS)-based metabonomics was adopted to discover the potential biomarkers in mice after agarwood incense smoke (AIS) intervention. Furthermore, the chemical components in agarwood were identified based on UHPLC-Q-Exactive Orbitrap-MS. The global view of potential compound-target-pathway (C-T-B) network was constructed through network pharmacology to understand the potentially material basis of biomarkers. RESULTS: Metabolic profiling indicated that the metabolic changed significantly in mice serum after AIS intervention. A total of 18 potential biomarkers closely related to insomnia and emotional disease were identified, mainly involving in tryptophan metabolism, arginine and proline metabolism, cysteine and methionine metabolism and steroid hormone biosynthesis pathways. A total of 138 components in agarwood were identified based on UHPLC-Q-Exactive Orbitrap-MS. The results showed that mainly compounds such as flidersia type 2-(2-phenylethyl) chromones (FTPECs) and sesquiterpenes exerted good docking abilities with key target proteins, which were involved in multiple diseases including depression and hypnosis. CONCLUSION: In conclusion, this study enhanced current understanding of the change of metabolic markers after AIS intervention. Meanwhile, it also confirmed the feasibility of combining metabolomics and network pharmacology to identify active components and elucidate the material basis of biomarkers and mechanisms.


Assuntos
Biomarcadores/metabolismo , Medicamentos de Ervas Chinesas/química , Metabolômica/métodos , Farmacologia em Rede , Thymelaeaceae/química , Animais , Cromatografia Líquida de Alta Pressão , Masculino , Espectrometria de Massas , Medicina Tradicional Chinesa , Camundongos , Camundongos Endogâmicos C57BL , Fumaça
18.
Microbiol Spectr ; : e0120521, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35080439

RESUMO

Bacillus amyloliquefaciens is a nonpathogenic microorganism whose highly active amylase is widely isolated from soil and plants. TL106 is an isolate of Bacillus amyloliquefaciens isolated from cold- and disease-resistant Tibetan pigs in Linzhi, Tibet. Here, we report that TL106 not only could survive in acidic environments, high bile salt concentrations, and high-temperature conditions but also was resistant to antibiotics. It significantly improved the growth performance of weaned piglets, especially in the prevention of diarrhea. The crude fiber and crude ash digestibility in weaned piglets after TL106 administration was considerably higher than that in other groups. The results of 16S rRNA sequencing conveyed that TL106 stabilized gut microbiota that was disturbed by the weaning process with an increased level of Lachnospiraceae, Peptococcaceae.rc4_4, Erysipelotrichaceae.L7A_E11, and Mollicutes.RF39. Hence, this study proved that Bacillus amyloliquefaciens TL106 might be a candidate for antibiotics in Duroc×Landrace×Yorkshire weaned piglets. IMPORTANCE Antibiotics are often used to promote animal growth and prevent diarrhea in weanling piglets. Nevertheless, intestinal pathogenic bacterial resistance and drug residues caused by antibiotic overuse are worthy of concern and demand an urgent solution. Bacillus amyloliquefaciens TL106 has been isolated from cold- and disease-resistant Tibetan pigs in Linzhi, Tibet. It significantly improved the growth performance, decreased diarrhea, increased the absorption of crude substances, and regulated the gut flora homeostasis in Duroc×Landrace×Yorkshire weaned piglets. As an antibiotic candidate, TL106 perfectly displayed its probiotic potential and pollution-free properties.

19.
Phytomedicine ; 95: 153865, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34856474

RESUMO

BACKGROUND: Tibial dyschondroplasia (TD) is a common disease characterized by proliferation and the deterioration of growth plate's chondrocytes due to widespread utilization of thiram in the agriculture and industrial sector. PURPOSE: In recent years, Nod-like receptor pyrin domain 3 (NLRP3) inflammasome has become a dilemma in the occurrence of many diseases. According to many research investigations, NLRP3 inflammasome has been linked to various diseases caused by pesticides and environmental toxins. Its involvement in such conditions opens up new treatment approaches. However, the role of the NLRP3 inflammasome in the development of TD is not fully understood under the impact of chlorogenic acid (CGA). METHODS: Chondrocytes were cultured with our previously developed methodology from growth plates. After morphological and molecular identification, chondrocytes were split into different groups to investigate the efficacy of chlorogenic acid. Cell apoptosis was determined through flow cytometry and Tunnel assay. Furthermore, RT-qPCR, immunofluorescence, and western blotting techniques were used to check marker genes and proteins expression. RESULTS: In thiram-induced TD, Bax/Bak activation persuade a parallel pathway, mediated by the NLRP3 base inflammasome. It is worth mentioning that the apoptotic executioners (caspase-3 and caspase-7) act upstream for inflammasome. Furthermore, chondrocytes' ability to undergo mitochondrial apoptosis was governed by anti-apoptotic members, e.g., Bcl-2 and Bcl-xl. Equilibrium of these anti-apoptotic proteins ensured appropriate regulation of apoptosis during the development and survival of chondrocytes. CONCLUSION: Chondrocytes have ability to undergo Bax/Bak-mediated apoptosis and generate pro-inflammatory signals, e.g., NLRP3 in thiram-induced TD. So, the Nod-like receptor pyrin domain 3 is the potential target to eliminate TD at all stages of pathology, while drugs, e.g., CGA, can significantly improve chondrocytes' survival by targeting these pro-inflammatory signals.


Assuntos
Ácido Clorogênico/farmacologia , Condrócitos/efeitos dos fármacos , Inflamassomos , Tiram , Animais , Galinhas , Proteína 3 que Contém Domínio de Pirina da Família NLR , Domínio Pirina , Proteína Killer-Antagonista Homóloga a bcl-2 , Proteína X Associada a bcl-2
20.
PeerJ ; 9: e12098, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631311

RESUMO

Pinus tabulaeformis plantations have been established around northern China to restore degraded land and provide timber or fuelwood. In recent years, widely distributed monoculture P. tabulaeformis forests have been transformed into mixed forests due to various ecological problems. However, the current research on the influence of near-natural transformation of P. tabulaeformis on soil microbial diversity and community composition remains limited. Therefore, we examined the effect of forest conversion from monoculture Pinus tabuliformis (PT) to P. tabuliformis-Armeniaca vulgaris (PTAU), P. tabuliformis - Robinia pseudoacacia (PTRP), P. tabuliformis - Vitex negundo L. var. heterophylla (PTVN) forests on soil microbial community diversity and composition. The results indicated that compared to PT, PTAU, PTVN, and PTRP could enhance the soil pH, TC, TN, AN, and AK in different degrees, the most obvious in PTAU. Near-natural transformation of P. tabuliformis could improve soil bacterial Pielou_e index, and Simpson index, as well as soil fungal Chao1 index. Proteobacteria and Ascomycota were the dominant soil microbial community at the phylum level. What's more, both soil bacterial and fungal community among PT, PTAU, PTRP and PTVN showed clear different, and PTAU obviously altered the soil microbial community structure. Proteobacteria was the predominant group in PT, while, Gemmatimonadetes enriched in PTVN. Ascomycota was the predominant group in PTAU, while, Basidiomycota was the predominant group in PTRP. Near-natural transformation of P. tabuliformis could change soil microbial community via altering soil characteristics. In brief, our research results revealed the influence of tree composition and soil nutrient availability on soil microbial diversity and composition, and provided management guidance for introduction soil microbial community in forest protection and management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA