Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Math Biosci Eng ; 21(5): 5947-5971, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38872565

RESUMO

The technology of robot-assisted prostate seed implantation has developed rapidly. However, during the process, there are some problems to be solved, such as non-intuitive visualization effects and complicated robot control. To improve the intelligence and visualization of the operation process, a voice control technology of prostate seed implantation robot in augmented reality environment was proposed. Initially, the MRI image of the prostate was denoised and segmented. The three-dimensional model of prostate and its surrounding tissues was reconstructed by surface rendering technology. Combined with holographic application program, the augmented reality system of prostate seed implantation was built. An improved singular value decomposition three-dimensional registration algorithm based on iterative closest point was proposed, and the results of three-dimensional registration experiments verified that the algorithm could effectively improve the three-dimensional registration accuracy. A fusion algorithm based on spectral subtraction and BP neural network was proposed. The experimental results showed that the average delay of the fusion algorithm was 1.314 s, and the overall response time of the integrated system was 1.5 s. The fusion algorithm could effectively improve the reliability of the voice control system, and the integrated system could meet the responsiveness requirements of prostate seed implantation.


Assuntos
Algoritmos , Realidade Aumentada , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Próstata , Neoplasias da Próstata , Robótica , Humanos , Masculino , Robótica/instrumentação , Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/diagnóstico por imagem , Próstata/diagnóstico por imagem , Imageamento Tridimensional , Voz , Procedimentos Cirúrgicos Robóticos/instrumentação , Procedimentos Cirúrgicos Robóticos/métodos , Holografia/métodos , Holografia/instrumentação , Braquiterapia/instrumentação , Reprodutibilidade dos Testes
2.
Materials (Basel) ; 17(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38730745

RESUMO

The Applications of silica aerogel are limited due to its brittleness and low strength. As a result, it is essential to strengthen and toughen it. Organic nanofibers are one of the preferred reinforcement materials. In this work, we designed and fabricated flexible and compressible nanostructure-assembled aramid nanofiber/silica composites aerogel (ANF/SiO2 aerogel) to improve the mechanical strength and flexibility of silica aerogel without compromising thermal insulation properties. The aramid nanofiber/silica composite aerogels were prepared by immersing the aramid nanofiber wet gel into the silica sol for a certain period of time followed by freeze drying without solvent replacement. The surface modifier 3-aminopropyltriethoxysilane (APTES) was used as a coupling agent to form chemical linkage between the ANF fiber and silica gel. It was observed that APTES can effectively drive the silica sol to infuse into ANF hydrogel, promoting the assembly of silica gel onto the fiber surface and a uniform distribution in the network of ANF. The compressive resilience, thermal stability, and thermal insulation properties of the composite aerogels were evaluated by inducing the silica aerogel into the ANF network to form a protective layer on the fiber and change the pore structure in the ANF network.

3.
Materials (Basel) ; 17(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38591986

RESUMO

Ceramic fiber thread is one of the key components in flexible external thermal insulation blankets, and it has been applied in various fields as a flexible ceramic fibrous material with excellent deformability and high-temperature resistance. However, ceramic fiber threads are often subjected to reciprocating friction motion at specific bending angles, making them highly susceptible to abrade and fracture. Enhancing the abrasion resistance performance of ceramic fiber threads under bending conditions is the future trend and remains a significant challenge. Hence, we design and construct a novel polyurethane-modified coating on the ceramic fiber threads to improve their abrasion resistance performance. The effects of the types and concentrations of modifiers on the microstructure, abrasion resistance property, and tensile property of ceramic fiber threads are systematically investigated. The ceramic fiber threads, after modification with hexamethylene diisocyanate waterborne polyurethane (HDI-WPU) with a concentration of 3%, exhibit excellent abrasion resistance properties. The number of friction cycles at fracture of the modified ceramic fiber thread is more than three times, and the tensile strength is more than one and a half times, that of the original ceramic fiber thread, demonstrating the great potential of the HDI-WPU modifier for enhancing the abrasion resistance performance of ceramic fiber threads.

4.
Adv Sci (Weinh) ; 11(17): e2306602, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38350733

RESUMO

Wounds infected with multidrug-resistant (MDR) bacteria are increasingly threatening public health and challenging clinical treatments because of intensive bacterial colonization, excessive inflammatory responses, and superabundant oxidative stress. To overcome this malignant burden and promote wound healing, a multifunctional cryogel (HA/TA2/KR2) composed of hyaluronic acid (HA), tannic acid (TA), and KR-12 peptides is designed. The cryogel exhibited excellent shape-memory properties, strong absorption performance, and hemostatic capacity. In vitro experiments demonstrated that KR-12 in the cryogel can be responsively released by stimulation with hyaluronidase produced by bacteria, reaching robust antibacterial activity against Escherichia coli (E. coli), MDR Pseudomonas aeruginosa (MDR-PA), and methicillin-resistant Staphylococcus aureus (MRSA) by disrupting bacterial cell membranes. Furthermore, the synergetic effect of KR-12 and TA can efficiently scavenge ROS and decrease expression of pro-inflammatory cytokines (tumor necrosis factor (TNF)-α & interleukin (IL)-6), as well as modulate the macrophage phenotype toward the M2 type. In vivo animal tests indicated that the cryogel can effectively destroy bacteria in the wound and promote healing process via accelerating angiogenesis and re-epithelialization. Proteomic analysis revealed the underlying mechanism by which the cryogel mainly reshaped the infected wound microenvironment by inhibiting the Nuclear factor kappa B (NF-κB) signaling pathway and activating the Janus kinase-Signal transducer and activator of transcription (JAK-STAT6) signaling pathway. Therefore, the HA/TA2/KR2 cryogel is a promising dressing candidate for MDR bacteria-infected wound healing.


Assuntos
Antibacterianos , Criogéis , Modelos Animais de Doenças , Hialuronoglucosaminidase , Espécies Reativas de Oxigênio , Cicatrização , Animais , Camundongos , Antibacterianos/farmacologia , Criogéis/farmacologia , Criogéis/química , Escherichia coli/efeitos dos fármacos , Ácido Hialurônico/farmacologia , Hialuronoglucosaminidase/metabolismo , Inflamação/tratamento farmacológico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Cicatrização/efeitos dos fármacos , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Camundongos Endogâmicos BALB C
5.
Chemosphere ; 352: 141264, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244867

RESUMO

The oxygenation of Fe(II)-bearing minerals for hydroxyl radicals (HO•) formation and contaminant attenuation receives increasing attentions. However, information on dissolved organic matter (DOM) with different types, concentrations, and molecular weights (MWs) in manipulating HO• formation and contaminant attenuation during mineral oxygenation remain unclear. In this study, four iron-pillared montmorillonites (IPMs) and two DOM samples [e.g., humic acids (HA) and fulvic acids (FA)] were prepared to explore the HO• formation and phenanthrene attenuation during the oxygenation of IPMs in the presence or absence of DOMs. Results showed that iron-pillared and high-temperature calcination procedures extended the interlayer domain of IPMs, which provided favorable conditions for a high HO• production from 1293 to 14537 µmol kg-1. The surface-absorbed/low crystalline Fe(Ⅱ) was the predominant Fe(Ⅱ) fractionations for HO• production, and presence of DOMs significantly enhanced the HO• production and phenanthrene attenuation. Moreover, regardless of the types and concentrations, the low MW (LMW, <1 kDa) fraction within DOM pool contributed highest to HO• production and phenanthrene attenuation, followed by the bulk and high MW (HMW-, 1 kDa∼0.45 µm) fractions, and FA exhibited more efficient effects in promoting HO• production and phenanthrene attenuation than HA. The fluorescent spectral analysis further revealed that phenolic-like fluorophores in LMW-fraction were the main substances responsible for the enhanced HO• production and phenanthrene attenuation. The results deepen our understandings toward the behaviors and fate of aquatic HO• and contaminants, and also provide technical guidance for the remediation of contaminated environments.


Assuntos
Ferro , Fenantrenos , Ferro/química , Matéria Orgânica Dissolvida , Radical Hidroxila/química , Bentonita , Compostos Ferrosos , Substâncias Húmicas/análise
6.
Eur Radiol ; 34(4): 2198-2208, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37707551

RESUMO

OBJECTIVES: To investigate whether a novel assessment of thrombus permeability obtained from perfusion computed tomography (CTP) can act as a more accurate predictor of clinical response to mechanical thrombectomy (MT) in acute ischemic stroke (AIS). MATERIALS AND METHODS: We performed a study including two cohorts of AIS patients who underwent MT admitted to a single-center between April 2018 and February 2022: a retrospective development cohort (n = 71) and a prospective independent validation cohort (n = 96). Thrombus permeability was determined in terms of entire thrombus time-attenuation curve (TAC) on CTP. Association between thrombus TAC distributions and histopathological results was analyzed in the development cohort. Logistic regression was used to assess the performance of the TAC for predicting 90-day modified Rankin Scale (mRS) score, and good outcome was defined as a mRS score of ≤ 2. Basic clinical characteristics was used to build a routine clinical model. A combined model gathered TAC and basic clinical characteristics was also developed. The performance of the three models is compared on the independent validation set. RESULTS: Two TAC distributions were observed-unimodal (uTAC) and linear (lTAC). TAC distributions achieved strong correlations (|r|= 0.627, p < 0.001) with histopathological results, in which uTAC associated with fibrin- and platelet-rich clot while lTAC associated with red blood cell-rich clot. The uTAC was independently associated with poor outcome (odds ratio, 0.08 [95% confidence interval (CI), 0.02-0.31]; p < 0.001). TAC distributions yielded an AUC of 0.78 (95% CI, 0.70-0.87) for predicting clinical outcome. When combined clinical characteristics, the performance was significantly improved (AUC, 0.85 [95% CI, 0.76-0.93]; p < 0.001) and higher than routine clinical model (AUC, 0.69 [95% CI, 0.59-0.83]; p < 0.001). CONCLUSIONS: Thrombus TAC on CTP were found to be a promising new imaging biomarker to predict the outcomes of MT in AIS. CLINICAL RELEVANCE STATEMENT: This study revealed that clot-based time attenuation curve based on admission perfusion CT could reflect the permeability and composition of thrombus and, also, provide valuable information to predict the clinical outcomes of mechanical thrombectomy in patients with acute ischemia stroke. KEY POINTS: • Two time-attenuation curves distributions achieved strong correlations (|r|= 0.627, p < 0.001) with histopathological results. • The unimodal time-attenuation curve was independently associated with poor outcome (odds ratio, 0.08 [0.02-0.31]; p < 0.001). • The time-attenuation curve distributions yielded a higher performance for detecting clinical outcome than routine clinical model (AUC, 0.78 [0.70-0.87] vs 0.69 [0.59-0.83]; p < 0.001).


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Trombose , Humanos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/terapia , AVC Isquêmico/diagnóstico por imagem , AVC Isquêmico/cirurgia , Resultado do Tratamento , Estudos Retrospectivos , Estudos Prospectivos , Trombectomia , Angiografia Cerebral/métodos , Isquemia , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/cirurgia
7.
Aging (Albany NY) ; 15(21): 12251-12263, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37934581

RESUMO

Drug resistance to chemotherapy agents presents a major obstacle to the effective treatment of hepatocellular carcinoma (HCC), a common type of liver cancer. Increasing evidence indicates a link between drug resistance and the recurrence of HCC. Polyphyllin I (PPI), a promising pharmaceutical candidate, has shown potential therapeutic advantages in the treatment of sorafenib-resistant hepatocellular carcinoma (SR-HCC cells). In this study, we sought to investigate the mechanism underlying the inhibitory effect of PPI on the invasion and metastasis of SR-HCC cells. Our in vitro studies included scratch wound-healing migration assays and transwell assays to examine PPI's effect on HCC cell migration and invasion. Flow cytometry was employed to analyze the accumulation or efflux of chemotherapy drugs. The results of these experiments demonstrated that PPI increased the susceptibility of HCC to sorafenib while inhibiting SR-HCC cell growth, migration, and invasion. Molecular docking analysis revealed that PPI exhibited a higher binding affinity with GRP78. Western blot analysis and immunofluorescence experiments showed that PPI reduced the expression of GRP78, E-cadherin, N-cadherin, Vimentin, and ABCG2 in SR-HCC cells. Interference with and overproduction of GRP78 in vitro impacted the proliferation, migration, invasion, and metastasis of HCC cells. Further examination revealed that PPI hindered the expression of GRP78 protein, resulting in a suppressive effect on SR-HCC cell migration and invasion. Histological examination of tumor tissue substantiated that administering PPI via gavage to HepG2/S xenograft nude mice inhibited tumor growth and significantly reduced tumor size, as evidenced by xenograft experiments involving nude mice. Hematoxylin and eosin (HE) staining of tumor tissue specimens, along with immunohistochemistry (IHC), were conducted to evaluate the expression levels of Ki67, GRP78, N-cadherin, Vimentin, and ABCG2. The results indicated that PPI administration decreased the levels of proteins associated with metastasis and markers of drug resistance in tumor tissues, impeding tumor growth and spread. Overall, our findings demonstrated that PPI effectively suppressed the viability, proliferation, invasion, and metastasis of SR-HCC cells both in vitro and in vivo by modulating GRP78 activity. These findings provide new insights into the mechanism of PPI inhibition of SR-HCC cell invasion and metastasis, highlighting PPI as a potential treatment option for sorafenib-resistant HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Chaperona BiP do Retículo Endoplasmático , Vimentina/metabolismo , Camundongos Nus , Preparações Farmacêuticas , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Proliferação de Células , Caderinas/metabolismo , Movimento Celular
8.
IEEE J Biomed Health Inform ; 27(12): 5883-5894, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37792661

RESUMO

Automatic delineation of the lumen and vessel contours in intravascular ultrasound (IVUS) images is crucial for the subsequent IVUS-based analysis. Existing methods usually address this task through mask-based segmentation, which cannot effectively handle the anatomical plausibility of the lumen and external elastic lamina (EEL) contours and thus limits their performance. In this article, we propose a contour encoding based method called coupled contour regression network (CCRNet) to directly predict the lumen and EEL contour pairs. The lumen and EEL contours are resampled, coupled, and embedded into a low-dimensional space to learn a compact contour representation. Then, we employ a convolutional network backbone to predict the coupled contour signatures and reconstruct the signatures to the object contours by a linear decoder. Assisted by the implicit anatomical prior of the paired lumen and EEL contours in the signature space and contour decoder, CCRNet has the potential to avoid producing unreasonable results. We evaluated our proposed method on a large IVUS dataset consisting of 7204 cross-sectional frames from 185 pullbacks. The CCRNet can rapidly extract the contours at 100 fps. Without any post-processing, all produced contours are anatomically reasonable in the test 19 pullbacks. The mean Dice similarity coefficients of our CCRNet for the lumen and EEL are 0.940 and 0.958, which are comparable to the mask-based models. In terms of the contour metric Hausdorff distance, our CCRNet achieves 0.258 mm for lumen and 0.268 mm for EEL, which outperforms the mask-based models.


Assuntos
Ultrassonografia de Intervenção , Humanos , Estudos Transversais , Ultrassonografia de Intervenção/métodos , Ultrassonografia
9.
Med Oncol ; 40(11): 319, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37796396

RESUMO

Gastric cancer represents a significant global health concern, necessitating the exploration of novel therapeutic options. Diosmetin, a natural flavonoid derived from citrus and vegetables, has demonstrated promising anti-tumor activity against various tumor cells. However, the potential anticancer effect of diosmetin in gastric cancer and its underlying mechanism have yet to be elucidated. In this study, we aimed to investigate the impact of diosmetin on cell proliferation, migration, cell cycle progression and apoptosis in human gastric cancer HGC-27 cells. Our findings revealed that diosmetin effectively suppressed cell proliferation, induced G2/M phase cell cycle arrest, and triggered cell apoptosis. Mechanistically, diosmetin downregulated the expression of antiapoptotic proteins Bcl-2 and Bcl-xL, while upregulated the level of proapoptotic proteins such as Bax, cleaved PARP and cleaved caspase-3. Additionally, diosmetin inhibited Akt and FoxO1 phosphorylation, while activated the MAPK signaling pathway. Notably, pretreatment of IGF-1, an Akt activator, attenuated the diosmetin-induced apoptosis. Furthermore, pretreatment with SP600125, a JNK inhibitor, significantly reduced the protein level of LC3B, while promoted the expression of cleaved caspase-3 and cleaved PARP. Collectively, our results suggest that diosmetin holds promise as an effective therapeutic agent against gastric cancer by inducing apoptosis through inhibition of the Akt/FoxO1 pathway and promoting protective autophagy via the MAPK/JNK signaling pathway.


Assuntos
Neoplasias Gástricas , Humanos , Apoptose , Autofagia , Caspase 3 , Flavonoides/farmacologia , Sistema de Sinalização das MAP Quinases , Fosfatidilinositol 3-Quinases , Inibidores de Poli(ADP-Ribose) Polimerases , Proteínas Proto-Oncogênicas c-akt , Neoplasias Gástricas/tratamento farmacológico , Linhagem Celular Tumoral
10.
Medicine (Baltimore) ; 102(38): e35005, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37746966

RESUMO

Reliable prognostic gene signatures for cancer-associated fibroblasts (CAFs) in lung squamous cell carcinoma (LUSC) are still lacking, and the underlying genetic principles remain unclear. Therefore, the 2 main aims of our study were to establish a reliable CAFs prognostic gene signature that can be used to stratify patients with LUSC and to identify promising potential targets for more effective and individualized therapies. Clinical information and mRNA expression were accessed of the cancer genome atlas-LUSC cohort (n = 501) and GSE157011 cohort (n = 484). CAFs abundance were quantified by the multi-estimated algorithms. Stromal CAF-related genes were identified by weighted gene co-expression network analysis. The least absolute shrinkage and selection operator Cox regression method was utilized to identify the most relevant CAFs candidates for predicting prognosis. Chemotherapy sensitivity scores were calculated using the "pRRophetic" package in R software, and the tumor immune dysfunction and exclusion algorithm was employed to evaluate immunotherapy response. Gene set enrichment analysis and the Search Tool for Interaction of Chemicals database were applied to clarify the molecular mechanisms. In this study, we identified 288 hub CAF-related candidate genes by weighted gene co-expression network analysis. Next, 34 potential prognostic CAFs candidate genes were identified by univariate Cox regression in the cancer genome atlas-LUSC cohort. We prioritized the top 8 CAFs prognostic genes (DCBLD1, SLC24A3, ILK, SMAD7, SERPINE1, SNX9, PDGFA, and KLF10) by a least absolute shrinkage and selection operator Cox regression model, and these genes were used to identify low- and high-risk subgroups for unfavorable survival. In silico drug screening identified 6 effective compounds for high-risk CAFs-related LUSC: TAK-715, GW 441756, OSU-03012, MP470, FH535, and KIN001-266. Additionally, search tool for interaction of chemicals database highlighted PI3K-Akt signaling as a potential target pathway for high-risk CAFs-related LUSC. Overall, our findings provide a molecular classifier for high-risk CAFs-related LUSC and suggest that treatment with PI3K-Akt signaling inhibitors could benefit these patients.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Prognóstico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Pulmão
11.
Microbiol Spectr ; 11(4): e0085223, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37432123

RESUMO

Polymyxins are last-line antibiotics employed against multidrug-resistant (MDR) Klebsiella pneumoniae. Worryingly, polymyxin resistance is rapidly on the rise globally. Polymyxins initially target lipid A of lipopolysaccharides (LPSs) in the cell outer membrane (OM), causing disorganization and cell lysis. While most studies focus on how genetic variations confer polymyxin resistance, the mechanisms of membrane remodeling and metabolic changes in polymyxin-resistant strains remain unclear, thus hampering the development of effective therapies to treat severe K. pneumoniae infections. In the present study, lipid A profiling, OM lipidomics, genomics, and metabolomics were integrated to elucidate the global mechanisms of polymyxin resistance and metabolic adaptation in a polymyxin-resistant strain (strain S01R; MIC of >128 mg/L) obtained from K. pneumoniae strain S01, a polymyxin-susceptible (MIC of 2 mg/L), New Delhi metallo-ß-lactamase (NDM)-producing MDR clinical isolate. Genomic analysis revealed a novel in-frame deletion at position V258 of PhoQ in S01R, potentially leading to lipid A modification with 4-amino-4-deoxy-l-arabinose (L-Ara4N) despite the absence of polymyxin B. Comparative metabolomic analysis revealed slightly elevated levels of energy production and amino acid metabolism in S01R compared to their levels in S01. Exposure to polymyxin B (4 mg/L for S01 and 512 mg/L for S01R) substantially altered energy, nucleotide, and amino acid metabolism and resulted in greater accumulation of lipids in both strains. Furthermore, the change induced by polymyxin B treatment was dramatic at both 1 and 4 h in S01 but only significant at 4 h in S01R. Overall, profound metabolic adaptation was observed in S01R following polymyxin B treatment. These findings contribute to our understanding of polymyxin resistance mechanisms in problematic NDM-producing K. pneumoniae strains and may facilitate the discovery of novel therapeutic targets. IMPORTANCE Antimicrobial resistance (AMR) is a major threat to global health. The emergence of resistance to the polymyxins that are the last line of defense in so-called Gram-negative "superbugs" has further increased the urgency to develop novel therapies. There are frequent outbreaks of K. pneumoniae infections in hospitals being reported, and polymyxin usage is increasing remarkably. Importantly, the polymyxin-resistant K. pneumoniae strains are imposing more severe consequences to health systems. Using metabolomics, lipid A profiling, and outer membrane lipidomics, our findings reveal (i) changes in the pentose phosphate pathway and amino acid and nucleotide metabolism in a susceptible strain following polymyxin treatment and (ii) how cellular metabolism, lipid A modification, and outer membrane remodeling were altered in K. pneumoniae following the acquisition of polymyxin resistance. Our study provides, for the first time, mechanistic insights into metabolic responses to polymyxin treatment in a multidrug-resistant, NDM-producing K. pneumoniae clinical isolate with acquired polymyxin resistance. Overall, these results will assist in identifying new therapeutic targets to combat and prevent polymyxin resistance.


Assuntos
Infecções por Klebsiella , Polimixinas , Humanos , Polimixinas/farmacologia , Polimixinas/metabolismo , Polimixina B/farmacologia , Klebsiella pneumoniae , Lipídeo A/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Metabolismo dos Lipídeos , Infecções por Klebsiella/tratamento farmacológico , Testes de Sensibilidade Microbiana
12.
Crit Rev Microbiol ; : 1-17, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37439132

RESUMO

Despite ongoing breakthroughs in novel anticancer therapies, chemotherapy remains a mainstream therapeutic modality in different types of cancer. Unfortunately, chemotherapy-related toxicity (CRT) often leads to dose limitation, and even results in treatment termination. Over the past few years, accumulating evidence has indicated that the gut microbiota is extensively engaged in various toxicities initiated by chemotherapeutic drugs, either directly or indirectly. The gut microbiota can now be targeted to reduce the toxicity of chemotherapy. In the current review, we summarized the clinical relationship between the gut microbiota and CRT, as well as the critical role of the gut microbiota in the occurrence and development of CRT. We then summarized the key mechanisms by which the gut microbiota modulates CRT. Furthermore, currently available strategies to mitigate CRT by targeting the gut microbiota were summarized and discussed. This review offers a novel perspective for the mitigation of diverse chemotherapy-associated toxic reactions in cancer patients and the future development of innovative drugs or functional supplements to alleviate CRT via targeting the gut microbiota.

13.
J Cancer Res Clin Oncol ; 149(13): 11397-11410, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37378674

RESUMO

PURPOSE: Programmed death-ligand 1 (PD-L1) and DNA mismatch repair (MMR) are considered predictive biomarkers for immunotherapy in cervical cancer. However, their expression in primary tumors and metastases does not always match affecting the course of treatment. We investigated the consistency of their expression in primary and matched recurrent/metastatic lesions from patients with cervical cancer. METHODS: Primary and matched recurrent/metastatic specimens from patients with recurrent cervical cancer (n = 194) were stained for PD-L1 and MMR (MLHI, MSH6, MSH2, and PMS2) using immunohistochemistry. The degree of consistency of PD-L1 and MMR expression in these lesions was analyzed. RESULTS: The inconsistency rate of PD-L1 expression in primary and recurrent/metastatic lesions was 33.0%, and it varied between the recurrence sites. Positive PD-L1 rate in primary lesions was lower (15.4%) than that in recurrent/metastatic lesions (30.4%). The discordance rate of MMR expression between primary and recurrent/metastatic lesions was 4.1%. CONCLUSION: We conclude that to use PD-L1 as a predictive biomarker for immunotherapy, analysis of both metastatic and primary lesions may be required. High consistency rate of MMR expression between primary and metastatic lesions suggests that testing primary lesions alone can be sufficient for guiding the course of therapy, thereby solving the difficulty of obtaining recurrent/metastatic specimens in clinic.


Assuntos
Antígeno B7-H1 , Neoplasias do Colo do Útero , Feminino , Humanos , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/genética , Neoplasias do Colo do Útero/genética , Reparo de Erro de Pareamento de DNA , Recidiva Local de Neoplasia/genética
14.
Bioresour Technol ; 385: 129380, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37356503

RESUMO

Nano Y2O3-modified biochar composites (Y2O3@BC600) were fabricated successfully and exhibited great adsorption toward oxytetracycline (OTC). The Langmuir adsorption capacity of Y2O3@BC600-1:4 for OTC reached 223.46 mg/g, 10.52 times greater than that of BC600. The higher dispersion of Y2O3 nanoparticles, increased surface area of 175.65 m2/g and expanded porosity of 0.27 cm3/g accounted for higher OTC adsorption by Y2O3@BC600-1:4. Y2O3@BC600-1:4 could resist the interference of co-existing cations (Na+, K+, Mg2+, Ca2+) and anions (Cl-, NO3-, SO42-) on OTC removal. Y2O3 coating changed surface charge property of BC600, favoring the contribution of electrostatic interaction. Synchrotron radiation-based Fourier transform infrared spectroscopy detected obvious peak shift and intensity change of surface -OH when OTC adsorption occurred. Accordingly, stronger H-bonding (charge-assisted hydrogen bond, OTC-H2N+···HO-Y2O3@BC600-1:4) was proposed for OTC adsorption. Y2O3@BC600 exhibited renewability and stability in the adsorptive removal of OTC. Therefore, Y2O3@BC600 may be a novel and suitable adsorbent for antibiotic removal.


Assuntos
Nanocompostos , Oxitetraciclina , Poluentes Químicos da Água , Adsorção , Carvão Vegetal/química , Cátions , Poluentes Químicos da Água/química , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Small ; 19(38): e2301421, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37264765

RESUMO

Organic semiconductor single crystals (OSSCs) are ideal materials for studying the intrinsic properties of organic semiconductors (OSCs) and constructing high-performance organic field-effect transistors (OFETs). However, there is no general method to rapidly prepare thickness-controllable and uniform single crystals for various OSCs. Here, inspired by the recrystallization (a spontaneous morphological instability phenomenon) of polycrystalline films, a spatial confinement recrystallization (SCR) method is developed to rapidly (even at several second timescales) grow thickness-controllable and uniform OSSCs in a well-controlled way by applying longitudinal pressure to tailor the growth direction of grains in OSCs polycrystalline films. The relationship between growth parameters including the growth time, temperature, longitudinal pressure, and thickness is comprehensively investigated. Remarkably, this method is applicable for various OSCs including insoluble and soluble small molecules and polymers, and can realize the high-quality crystal array growth. The corresponding 50 dinaphtho[2,3-b:2″,3″-f]thieno[3,2-b]thiophene (DNTT) single crystals coplanar OFETs prepared by the same batch have the mobility of 4.1 ± 0.4 cm2 V-1 s-1 , showing excellent uniformity. The overall performance of the method is superior to the reported methods in term of growth rate, generality, thickness controllability, and uniformity, indicating its broad application prospects in organic electronic and optoelectronic devices.

16.
Biotechnol Genet Eng Rev ; : 1-12, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37171373

RESUMO

To explore the analysis on application effect and prognostic factors of medical care combined with nursing in the elderly with type 2 diabetes mellitus (T2DM) and cerebral infraction (CI) based on targeted management mode. The clinical data of 180 elderly patients with T2DM and CI in our hospital from August 2017 to August 2019 were selected for retrospective analysis. Their cognitive function and daily living ability before and after intervention were evaluated, using the National Institutes of Health Stroke Scale (NIHSS) to evaluate their prognosis. They were divided into good prognosis group (n = 134) and poor prognosis group (n = 46) according to the score. Binary Logistic regression analysis was adopted to analyze the prognostic factors of such patients. After intervention, patients had visibly lower indexes of blood glucose fluctuation and lower average scores of ADL and MMSE (P < 0.001), with differences in body mass index, systolic pressure, diastolic pressure, fasting blood glucose and triglyceride in both groups (P < 0.001). Binary Logistic regression analysis showed that systolic pressure, diastolic pressure and triglyceride were risk factors affecting patients' prognosis (P < 0.05). Medical care combined with nursing based on targeted management mode has a remarkable control effect on blood glucose, and has a positive effect on improving cognitive function and living ability of elderly patients with T2DM and CI. In addition, attention should be paid to monitoring systolic and diastolic blood pressures, and triglyceride in patients to improve the prognosis.

17.
ACS Appl Mater Interfaces ; 15(10): 13121-13130, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36877819

RESUMO

Porous fiber-based ceramics have been widely applied in various fields because of their excellent thermal insulation property and high thermal stability property. However, designing porous fibrous ceramics with enhanced comprehensive performances, such as low density, low thermal conductivity, and high mechanical properties at both room temperature and high temperature, is still a challenge and the future development trend. Hence, based on the lightweight cuttlefish bone that possesses a "wall-septa" structure with excellent mechanical performance, we design and fabricate a novel porous fibrous ceramic with the unique fiber-based dual structure of lamellas by the directional freeze-casting method and systematically investigate the effects of lamellar components on the microstructure and mechanical performances of the product. For the desired cuttlefish-bone-structure-like lamellar porous fiber-based ceramics (CLPFCs), the porous framework formed by the overlapping of transversely arranged fibers helps to reduce the density and thermal conductivity of the product, and the longitudinally arranged lamellar structure replaces traditional binders and plays an important role in improving the mechanical properties in the direction parallel to the X-Z plane. Compared with traditional porous fibrous materials reported in the literature, the CLPFCs with an Al2O3/SiO2 molar ratio of 1:2 in the lamellar component exhibits prominent comprehensive performances, such as low density, excellent thermal insulation property, and outstanding mechanical performances at both room temperature and high temperature (3.46 MPa at 1300 °C), indicating that the CLPFCs are a promising candidate for applications in high-temperature thermal insulation systems.

18.
Chempluschem ; 88(3): e202300023, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36861491

RESUMO

As a green and sustainable strategy, the electrocatalytic N2 reduction reaction (NRR) has been considered the best potential approach to replace the traditional Haber-Bosch process under ambient conditions. The key is to exploit efficient and low-cost electrocatalysts according to the current situation. Herein, a series of Molybdenum (Mo) doped CeO2 nanorods (NR) catalysts were successfully fabricated via a hydrothermal reaction coupled with high temperature calcination. The nanorod structures were not altered after Mo atom doping. The obtained 5 %-Mo-CeO2 nanorods act as a superior electrocatalyst in neutral electrolytes of 0.1 M Na2 SO4 . Such electrocatalyst significantly enhances NRR performance with an NH3 yield of 10.9 µg h-1 mg-1 cat at -0.45 V vs reversible hydrogen electrode (RHE) and a Faradaic efficiency (FE) of 26.5 % at -0.25 V vs RHE. That outcome is 4 times higher than that of CeO2 nanorods (2.6 µg h-1 mg-1 cat ; 4.9 %). Meanwhile, density functional theory (DFT) calculation shows the characteristics after Mo doping: the band gap value lowers, the density of states increases, electrons are more easily excited, and N2 molecules are more easily adsorbed, thereby enhancing the activity of the electrocatalytic NRR.

19.
Sci Total Environ ; 870: 161870, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36731571

RESUMO

The heavy metal Cd can cause severe toxicity on aquatic algae, but there are few studies on the cytotoxicity of heavy metal on algae based on synchrotron radiation technology. In this study, synchrotron radiation-based Fourier transform infrared spectromicroscopy (SR-FTIR) was used to characterize in vivo the toxic effects of Cd on Cosmarium sp. cells, emphasizing the influence of dissolved organic matter (DOM) on Cd toxicity. Results showed that, in the absence of DOM, obvious growth inhibition, cell volume reduction, and photosynthesis disruption could be observed with increasing Cd concentrations (0-500 µg/L). Based on the SR-FTIR imaging and functional group quantification, it was shown that the biosynthesis of biomolecules such as proteins, lipids, and carbohydrates was inhibited in algal cells. However, the addition of DOM caused significant heterogeneities in biomacromolecule biosynthesis that an increased biosynthesis of carbohydrates and structural lipids but an inhibited biosynthesis of proteins and storage lipids were observed. Furthermore, the correlation analysis and principal component analysis showed a good correlation between v(C-OH)/Amide II and biochemical parameters, indicating that changes of carbohydrates could be used as the biomarker to indicate the cytotoxicity of heavy metals to algal cells. These findings provide insight into the mechanisms of heavy metal cytotoxicity to aquatic algae and systematic cytotoxicity assessment under various aquatic conditions.


Assuntos
Clorófitas , Metais Pesados , Cádmio/análise , Matéria Orgânica Dissolvida , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Síncrotrons , Clorófitas/metabolismo , Plantas/metabolismo , Carboidratos , Lipídeos
20.
Eur Radiol ; 33(2): 970-980, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36066731

RESUMO

OBJECTIVES: To develop a clot-based radiomics model using CT imaging radiomic features and machine learning to identify cardioembolic (CE) stroke before mechanical thrombectomy (MTB) in patients with acute ischemic stroke (AIS). MATERIALS AND METHODS: This retrospective four-center study consecutively included 403 patients with AIS who sequentially underwent CT and MTB between April 2016 and July 2021. These were grouped into training, testing, and external validation cohorts. Thrombus-extracted radiomic features and basic information were gathered to construct a machine learning model to predict CE stroke. The radiological characteristics and basic information were used to build a routine radiological model. A combined radiomics and radiological features model was also developed. The performances of all models were evaluated and compared in the validation cohort. A histological analysis helped further assess the proposed model in all patients. RESULTS: The radiomics model yielded an area under the curve (AUC) of 0.838 (95% confidence interval [CI], 0.771-0.891) for predicting CE stroke in the validation cohort, significantly higher than the radiological model (AUC, 0.713; 95% CI, 0.636-0.781; p = 0.007) but similar to the combined model (AUC, 0.855; 95% CI, 0.791-0.906; p = 0.14). The thrombus radiomic features achieved stronger correlations with red blood cells (|rmax|, 0.74 vs. 0.32) and fibrin and platelet (|rmax|, 0.68 vs. 0.18) than radiological characteristics. CONCLUSION: The proposed CT-based radiomics model could reliably predict CE stroke in AIS, performing better than the routine radiological method. KEY POINTS: • Admission CT imaging could offer valuable information to identify the acute ischemic stroke source by radiomics analysis. • The proposed CT imaging-based radiomics model yielded a higher area under the curve (0.838) than the routine radiological method (0.713; p = 0.007). • Several radiomic features showed significantly stronger correlations with two main thrombus constituents (red blood cells, |rmax|, 0.74; fibrin and platelet, |rmax|, 0.68) than routine radiological characteristics.


Assuntos
AVC Embólico , AVC Isquêmico , Trombose , Humanos , AVC Isquêmico/diagnóstico por imagem , Estudos Retrospectivos , Trombose/complicações , Trombose/diagnóstico por imagem , Fibrina , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA