Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37570508

RESUMO

We reported the photoconduction properties of tungsten disulfide (WS2) nanoflakes obtained by the mechanical exfoliation method. The photocurrent measurements were carried out using a 532 nm laser source with different illumination powers. The results reveal a linear dependence of photocurrent on the excitation power, and the photoresponsivity shows an independent behavior at higher light intensities (400-4000 Wm-2). The WS2 photodetector exhibits superior performance with responsivity in the range of 36-73 AW-1 and a normalized gain in the range of 3.5-7.3 10-6 cm2V-1 at a lower bias voltage of 1 V. The admirable photoresponse at different light intensities suggests that WS2 nanostructures are of potential as a building block for novel optoelectronic device applications.

2.
Nat Commun ; 12(1): 1321, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637747

RESUMO

Layered MoS2 is considered as one of the most promising two-dimensional photocatalytic materials for hydrogen evolution and water splitting; however, the electronic structure at the MoS2-liquid interface is so far insufficiently resolved. Measuring and understanding the band offset at the surfaces of MoS2 are crucial for understanding catalytic reactions and to achieve further improvements in performance. Herein, the heterogeneous charge transfer behavior of MoS2 flakes of various layer numbers and sizes is addressed with high spatial resolution in organic solutions using the ferrocene/ferrocenium (Fc/Fc+) redox pair as a probe in near-field scanning electrochemical microscopy, i.e. in close nm probe-sample proximity. Redox mapping reveals an area and layer dependent reactivity for MoS2 with a detailed insight into the local processes as band offset and confinement of the faradaic current obtained. In combination with additional characterization methods, we deduce a band alignment occurring at the liquid-solid interface.

3.
Nat Commun ; 11(1): 3682, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32703950

RESUMO

Most chemical vapor deposition methods for transition metal dichalcogenides use an extremely small amount of precursor to render large single-crystal flakes, which usually causes low coverage of the materials on the substrate. In this study, a self-capping vapor-liquid-solid reaction is proposed to fabricate large-grain, continuous MoS2 films. An intermediate liquid phase-Na2Mo2O7 is formed through a eutectic reaction of MoO3 and NaF, followed by being sulfurized into MoS2. The as-formed MoS2 seeds function as a capping layer that reduces the nucleation density and promotes lateral growth. By tuning the driving force of the reaction, large mono/bilayer (1.1 mm/200 µm) flakes or full-coverage films (with a record-high average grain size of 450 µm) can be grown on centimeter-scale substrates. The field-effect transistors fabricated from the full-coverage films show high mobility (33 and 49 cm2 V-1 s-1 for the mono and bilayer regions) and on/off ratio (1 ~ 5 × 108) across a 1.5 cm × 1.5 cm region.

4.
Nanoscale ; 5(1): 262-8, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23160369

RESUMO

Photocatalytic conversion of carbon dioxide (CO(2)) to hydrocarbons such as methanol makes possible simultaneous solar energy harvesting and CO(2) reduction, two birds with one stone for the energy and environmental issues. This work describes a high photocatalytic conversion of CO(2) to methanol using graphene oxides (GOs) as a promising photocatalyst. The modified Hummer's method has been applied to synthesize the GO based photocatalyst for the enhanced catalytic activity. The photocatalytic CO(2) to methanol conversion rate on modified graphene oxide (GO-3) is 0.172 µmol g cat(-1) h(-1) under visible light, which is six-fold higher than the pure TiO(2).


Assuntos
Dióxido de Carbono/química , Dióxido de Carbono/efeitos da radiação , Grafite/química , Grafite/efeitos da radiação , Metanol/química , Catálise , Luz , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA