Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Reprod ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832713

RESUMO

Forkhead box L2 (FOXL2) is an indispensable key regulator of female follicular development, and it plays important roles in the morphogenesis, proliferation, and differentiation of follicle granulosa cells (GCs), such as establishing normal estradiol signaling and regulating steroid hormone synthesis. Nevertheless, the effects of FOXL2 on GC morphology and the underlying mechanism remain unknown. Using FOXL2 ChIP-seq analysis, we found that FOXL2 target genes significantly enriched in the actin cytoskeleton-related pathways. We confirmed that FOXL2 inhibited the expression of RhoA, a key gene for actin cytoskeleton rearrangement, by binding to TCATCCATCTCT in RhoA promoter region. In addition, the overexpression of FOXL2 in GCs induced the depolymerization of F-actin and the disordered of the actin filaments, resulting in a slowdown in the expansion of GCs, while silencing FOXL2 inhibited F-actin depolymerization and stabilized the actin filaments, thereby accelerating GC expansion. RhoA/ROCK pathway inhibitor Y-27632 exhibited similar effects to FOXL2 overexpression, even reversed the actin polymerization in FOXL2 silencing GCs. This study revealed for the first time that FOXL2 regulated GC actin cytoskeleton by RhoA/ROCK pathway, thus affecting GC expansion. Our findings provide new insights for constructing the regulatory network of FOXL2 and propose a potential mechanism for facilitating rapid follicle expansion, thereby laying a foundation for further understanding follicular development.

2.
Chem Commun (Camb) ; 59(38): 5697-5700, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37083021

RESUMO

We report SmCoO3 nanofibers as an efficient catalyst for nitrate reduction to ammonia. This catalyst achieves a large NH3 yield of 14.4 mg h-1 mgcat.-1 and a high faradaic efficiency of 81.3% at -1.0 V vs. RHE in 0.1 M PBS with 0.1 M NaNO3, and it also displays excellent electrochemical durability and structural stability. Theoretical calculations indicate that Sm-O and Co-O bonds have an incredibly low adsorption energy of -0.1 eV, which can significantly reduce the applied potential and hence enhance the catalytic activity.

3.
Adv Sci (Weinh) ; 10(17): e2206813, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37098587

RESUMO

Catalytically inactive CRISPR-Cas13 (dCas13)-based base editors can achieve the conversion of adenine-to-inosine (A-to-I) or cytidine-to-uridine (C-to-U) at the RNA level, however, the large size of dCas13 protein limits its in vivo applications. Here, a compact and efficient RNA base editor (ceRBE) is reported with high in vivo editing efficiency. The larger dCas13 protein is replaced with a 199-amino acid EcCas6e protein, derived from the Class 1 CRISPR family involved in pre-crRNA processing, and conducted optimization for toxicity and editing efficiency. The ceRBE efficiently achieves both A-to-I and C-to-U base editing with low transcriptome off-target in HEK293T cells. The efficient repair of the DMD Q1392X mutation (68.3±10.1%) is also demonstrated in a humanized mouse model of Duchenne muscular dystrophy (DMD) after AAV delivery, achieving restoration of expression for gene products. The study supports that the compact and efficient ceRBE has great potential for treating genetic diseases.


Assuntos
Sistemas CRISPR-Cas , Distrofia Muscular de Duchenne , Animais , Camundongos , Humanos , Sistemas CRISPR-Cas/genética , RNA/genética , Células HEK293 , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Mutação
4.
Angew Chem Int Ed Engl ; 62(5): e202215782, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36468550

RESUMO

We propose the pseudobrookite Fe2 TiO5 nanofiber with abundant oxygen vacancies as a new electrocatalyst to ambiently reduce nitrate to ammonia. Such catalyst achieves a large NH3 yield of 0.73 mmol h-1 mg-1 cat. and a high Faradaic Efficiency (FE) of 87.6 % in phosphate buffer saline solution with 0.1 M NaNO3 , which is lifted to 1.36 mmol h-1 mg-1 cat. and 96.06 % at -0.9 V vs. RHE for nitrite conversion to ammonia in 0.1 M NaNO2 . It also shows excellent electrochemical durability and structural stability. Theoretical calculation reveals the enhanced conductivity of this catalyst and an extremely low free energy of -0.28 eV for nitrate adsorption at the presence of vacant oxygen.

5.
Chem Commun (Camb) ; 58(99): 13811-13814, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36444816

RESUMO

In this study, we construct a Cu@ZrO2 heterogenous structure as a new catalyst that achieves a large NH3 yield of 15.4 mg h-1 mg-1cat. and a high faradaic efficiency of 67.6% at -0.7 V vs. RHE in 0.1 M PBS with 0.1 M NaNO3, and it also shows excellent electrochemical durability and structural stability. Theoretical calculations reveal an extremely low adsorption energy of -1.54 eV at Cu surfaces and Cu can significantly reduce the applied overpotential and correspondingly promote the catalytic activity.

6.
Mol Reprod Dev ; 89(2): 95-103, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35122350

RESUMO

Forkhead box L2 (FOXL2), one member in the superfamily of forkhead transcription factors, is a core transcription factor specifically expressed in ovarian granulosa cells and is essential for the development of follicles. FOXL2 has been shown to regulate the transcription of genes encoding enzymes that synthesize steroid hormones and estrogen receptors and regulate the expression of collagen genes in granulosa cells. This study explored the effect of FOXL2 on collagen gene expression in granulosa cells by overexpressing Foxl2 in pregranulosa cells, prehierarchical follicles and preovulation follicle granulosa cells. The results showed that FOXL2 regulated the expression of several genes encoding collagens in chicken granulosa cells and that overexpression of Foxl2 significantly reduced the messenger RNA and protein levels of Col4a1 in different granulosa cells. Moreover, luciferase reporter and chromatin immunoprecipitation assays were performed to study how FOXL2 regulates the expression of collagen genes, and the results showed that FOXL2 directly regulated the expression of Col4a1 by binding to the motif of CAGCAGCACCAGCAG between -640 and -625 bp upstream of the coding region. The results indicated that FOXL2 could regulate the components of the extracellular matrix; however, the biological significance of this regulation needs further clarification.


Assuntos
Galinhas , Células da Granulosa , Animais , Galinhas/genética , Galinhas/metabolismo , Colágeno/metabolismo , Colágeno/farmacologia , Feminino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Células da Granulosa/metabolismo , Folículo Ovariano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA