Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 13: 1036735, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36733798

RESUMO

Objective: To explore intraretinal blood flow perfusion and nerve changes, as well as the correlation between them, in diabetic patients without diabetic retinopathy (NDR). Method: Eighty-six NDR patients (86 eyes) who attended the ophthalmology clinic between December 2019 and December 2021 were included. Sixty-four eyes of 64 healthy examined controls in the same period were selected as the control group. The patients underwent routine ophthalmological examination, optical coherence tomography (OCT) and OCT angiography. Results: The average thickness, minimum thickness and thickness of each quadrant except for the superior temporal quadrant of the ganglion cell-inner plexiform layer (GCIPL) in the macular area of the affected eyes in the NDR group were lower than that of the tested eyes in the control group (P < 0.05). The average retinal nerve fibre layer (RNFL) thickness of the NDR group and the superior, inferior and nasal quadrants around the optic disc of the affected eyes in the NDR group were lower compared with the tested eyes in the control group (P < 0.001, P = 0.003, P = 0.001, P = 0.009). The mean vessel length density in the parafoveal and perifoveal areas in the NDR group was positively associated with the mean GCIPL thickness in the macular area (ρ = 0.265, ρ = 0.257 and P < 0.001). No blood flow perfusion parameters in the NDR group were correlated with the RNFL thickness of the corresponding quadrant around the optic disc (P > 0.05). Conclusion: In diabetic patients without diabetic retinopathy, the superficial retinal vessel density in the macular area positively correlated with GCIPL thickness, and the superficial retinal vessel density around the optic disc was not correlated with RNFL thickness.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Doenças Retinianas , Humanos , Células Ganglionares da Retina , Fibras Nervosas , Retina , Tomografia de Coerência Óptica/métodos
2.
Front Cell Dev Biol ; 9: 729728, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34692686

RESUMO

SO2, previously known as the product of industrial waste, has recently been proven to be a novel gasotransmitter in the cardiovascular system. It is endogenously produced from the metabolism pathway of sulfur-containing amino acids in mammalians. Endogenous SO2 acts as an important controller in the regulation of many biological processes including cardiovascular physiological and pathophysiological events. Recently, the studies on the regulatory effect of endogenous SO2 on cell apoptosis and its pathophysiological significance have attracted great attention. Endogenous SO2 can regulate the apoptosis of vascular smooth muscle cells, endothelial cells, cardiomyocytes, neuron, alveolar macrophages, polymorphonuclear neutrophils and retinal photoreceptor cells, which might be involved in the pathogenesis of hypertension, pulmonary hypertension, myocardial injury, brain injury, acute lung injury, and retinal disease. Therefore, in the present study, we described the current findings on how endogenous SO2 is generated and metabolized, and we summarized its regulatory effects on cell apoptosis, underlying mechanisms, and pathophysiological relevance.

3.
Int J Gen Med ; 14: 2127-2136, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093033

RESUMO

PURPOSE: Sulfur dioxide (SO2) is a novel gaseous signaling molecule that plays an important role in inflammation, which contributes the pathogenesis of acute kidney injury (AKI). The aim of this study was to explore the predictive value of plasma SO2 for AKI in high-risk patients. PATIENTS AND METHODS: A prospective cohort of 167 patients who underwent major noncardiac surgery was enrolled in the study. Plasma SO2, urine neutrophil gelatinase-associated lipocalin (NGAL), tissue inhibitor of metalloproteinase-2 (TIMP-2), and insulin-like growth factor-binding protein 7 (IGFBP7) levels were detected immediately after the operation. The primary endpoint was new-onset AKI within 72 h after admission. The ability of biomarkers including SO2 and a clinical risk model to predict AKI was compared by receiver operator characteristic (ROC) curve analysis and decision curve analysis (DCA), additional contributions were evaluated by integrated discrimination improvement (IDI) and net reclassification improvement (NRI) analyses. RESULTS: A total of 61 (36.5%) patients developed AKI within 72 h of surgery. Compared to NGAL and [TIMP-2]·[IGFBP7], SO2 showed better predictive ability for new-onset AKI with an area under the ROC curve of 0.771 (95% confidence interval: 0.700-0.832, p<0.001). The improvement in predictive value by including SO2 in the clinical risk model was supported by NRI (0.28; P=0.04) and IDI (0.15; P<0.001) analyses. The net benefit of the combination of SO2 and clinical variables was the max in DCA. CONCLUSION: Plasma SO2 shows a useful value for predicting new-onset AKI, and improved AKI prediction based on clinical variables, which can guide the implementation of preventive measures for high-risk patients.

4.
Exp Eye Res ; 203: 108403, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33326811

RESUMO

Retinal detachment (RD) is a severe sight-threatening complication that can be caused by a multitude of retinal diseases. It has been evidenced that minocycline exerts neuroprotective effects by targeting microglia in the pathogenesis of massive ocular lesions including RD, but mechanisms remain elusive. We carried out this research to elucidate the potential mediators that link RD-induced vision loss with microglia reactivity by discussing effects of minocycline on cytokine levels and A20, a negative regulator of inflammation. Minocycline or vehicle was intraperitoneally administrated immediately after RD and continued daily before animals being euthanized. The oxygen glucose deprivation assay was undertaken on the co-cultured BV-2 and 661W cells to mimic the condition of RD in vitro, where A20 siRNA was adopted to knock down the A20 expression in BV-2 cells. Photoreceptor cells apoptosis, inflammatory response and microglia activity following RD with or without minocycline were evaluated. Photoreceptor cells apoptosis and inflammatory response were induced after RD, which could be largely counteracted by minocycline. Minocycline postponed the migration and proliferation of microglia and facilitated their transition to the M2 subtype following RD. Blocking A20 expression in BV-2 cells with siRNA crippled the effect of minocycline. Collectively, minocycline yields a promoting effect on photoreceptor cells survival post-RD by modulating the transformation of microglia phenotypes, in which process A20 may play a "bridge" role.


Assuntos
Antibacterianos/farmacologia , Inflamação/prevenção & controle , Microglia/efeitos dos fármacos , Minociclina/farmacologia , Descolamento Retiniano/complicações , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Animais , Western Blotting , Técnicas de Cocultura , Modelos Animais de Doenças , Regulação da Expressão Gênica/fisiologia , Marcação In Situ das Extremidades Cortadas , Inflamação/etiologia , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fenótipo , Células Fotorreceptoras/efeitos dos fármacos , Células Fotorreceptoras/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Transfecção , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo
5.
Front Cell Dev Biol ; 9: 784799, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35118072

RESUMO

Objectives: The study was designed to explore the role of endogenous gaseous signaling molecule sulfur dioxide (SO2) in the control of cardiomyocyte apoptosis and its molecular mechanisms. Methods: Neonatal mouse cardiac myocytes (NMCMs) and H9c2 cells were used in the cell experiments. The endogenous SO2 pathway including SO2 level and the expression of SO2-generating enzyme aspartate aminotransferase 1/2 (AAT1/2) were detected in NMCMs. The apoptosis of cardiomyocytes was examined by a TUNEL assay. The cleavage and the activity of apoptotic proteins caspase9 and caspase3 were measured. The content of ATP, the opening of mitochondrial permeability transition pore (mPTP), and the cytochrome c (cytc) leakage were detected by immunofluorescence. The sulphenylation of cyclophilin-D (CypD) was detected by biotin switch analysis. The four CypD mutant plasmids in which cysteine sites were mutated to serine were constructed to identify the SO2-affected site in vitro. Results: ISO down-regulated the endogenous SO2/AAT pathway of cardiomyocytes in association with a significant increase in cardiomyocyte apoptosis, demonstrated by the increases in apoptosis, cleaved-caspase3/caspase3 ratio, and caspase3 activity. Furthermore, ISO significantly reduced ATP production in H9c2 cells, but the supplement of SO2 significantly restored the content of ATP. ISO stimulated mPTP opening, resulting in an increase in the release of cytc, which further increased the ratio of cleaved caspase9/caspase9 and enhanced the protein activity of caspase9. While, the supplementation of SO2 reversed the above effects. Mechanistically, SO2 did not affect CypD protein expression, but sulphenylated CypD and inhibited mPTP opening, resulting in an inhibition of cardiomyocyte apoptosis. The C104S mutation in CypD abolished SO2-induced sulphenylation of CypD, and thereby blocked the inhibitory effect of SO2 on the mPTP opening and cardiomyocyte apoptosis. Conclusion: Endogenous SO2 sulphenylated CypD at Cys104 to inhibit mPTP opening, and thus protected against cardiomyocyte apoptosis.

6.
Int Immunopharmacol ; 80: 106190, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31945611

RESUMO

PURPOSE: To explore the expression and role of lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) in retinal degeneration. METHODS: The retinal degeneration of BALB/c mice was induced by light exposure. BV2 cells were activated by LPS stimulation. Retinas or BV2 cells were pretreated with LOX-1 neutralizing antibody or Polyinosinic acid (PolyI) (the inhibitor of LOX-1) before light damage (LD) or LPS stimulation. LOX-1, TNF-α, IL-1ß, CCL2 and NF-κB expression were detected in retinas or BV2 cells by real-time RT-PCR, western blot or ELISA. Histological analyses of retinas were performed. Photoreceptor cell death was assessed by TUNEL assay in retinas or by flow cytometry in 661W cells cultured in microglia-conditioned medium. RESULTS: Photoreceptor cell death and elevated expression of LOX-1 were induced by LD in retinas of BALB/c mice. LOX-1 neutralizing antibody or PolyI pretreatment significantly reduced the elevated expression of LOX-1, TNF-α, IL-1ß, CCL2 and p-NF-κB caused by LD in retinas. Inhibition of LOX-1 by LOX-1 neutralizing antibody or PolyI significantly reduced photoreceptor cell death induced by LD in retinas. Elevated levels of TNF-α, IL-1ß and CCL2 caused by LPS were down-regulated by inhibition of LOX-1 in BV2 cells. Inhibition of LOX-1 reduces microglial neurotoxicity on photoreceptors. CONCLUSIONS: LOX-1 expression is increased in light induced retinal degeneration, what's more, inhibition of LOX-1 prevents inflammation and photoreceptor cell death in retinal degeneration and reduces microglial neurotoxicity on photoreceptors. Therefore, LOX-1 can be used as a potential therapeutic target for such retinal degeneration diseases.


Assuntos
Anticorpos Neutralizantes/farmacologia , Células Fotorreceptoras/efeitos dos fármacos , Degeneração Retiniana/tratamento farmacológico , Receptores Depuradores Classe E/antagonistas & inibidores , Animais , Anticorpos Neutralizantes/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Linhagem Celular , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Microglia/efeitos dos fármacos , Microglia/imunologia , Células Fotorreceptoras/imunologia , Células Fotorreceptoras/patologia , Degeneração Retiniana/imunologia , Degeneração Retiniana/patologia , Receptores Depuradores Classe E/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-29402407

RESUMO

Endogenous sulfur dioxide (SO2) was found to be generated from the enzymatic reaction catalysed by aspartate transference 1 (AAT1) in the mammals and play importantly biological effects. In the present study, we explored the existence of endogenous SO2 pathway in mouse retinal tissues and 661w photoreceptor cell and investigated its possible pathophysiological role in the hydrogen peroxide (H2O2)-induced mouse photoreceptor cell apoptosis. The data showed that endogenous SO2 pathway including AAT1 expression and SO2 content was found to be presented in mouse photoreceptor cells. AAT1 protein and SO2 were mainly distributed in the cytoplasm, while a small amount of AAT1 protein and SO2 was found in the nucleus of 661W photoreceptor cells. H2O2 significantly decreased the SO2 content and AAT1 expression, but increased the cleaved caspase-3 protein level and the apoptotic index, and the number of TUNEL-positive cells in the 661W photoreceptor cells. Moreover, an AAT inhibitor HDX treatment inhibited SO2 synthesis and mimicked H2O2-induced apoptosis in 661W cells. In conclusion, the endogenous SO2/AAT1 pathway is firstly found to be present in mouse photoreceptor cells, and might play an important role in the prevention from mouse photoreceptor cell apoptosis.

8.
Sci Rep ; 7(1): 17108, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215050

RESUMO

Photoreceptor cell death is the ultimate process underlying many retinal diseases, including retinal detachment (RD). Both autophagy and inflammatory factors, such as tumor necrosis factor-alpha (TNF-α), participate in photoreceptor cell death after RD. In this study, we examined whether TNF-α inhibition would impact the autophagy of photoreceptors and reduce the death of photoreceptors after retinal detachment (RD). RD models were created in C57BL/6J mice by a subretinal injection of 1% hyaluronic acid. The TNF-α inhibitor infliximab was administered via intraperitoneal injection two hours before RD. The levels of TNF-α and the autophagy-related proteins Atg5 and LC3B were assayed by immunofluorescence at 1 day, 3 days, and 7 days following RD. Apoptosis was examined at 3 days post-detachment via TUNEL assays. Photoreceptor cell counts were assessed at 7 days after RD. After RD, the protein levels of LC3B and Atg5 increased and reached a peak at 3 days, which decreased at 7 days. The expression of LC3B and Atg5 was prolonged and increased at a slower rate with TNF-α inhibition. The moderate augmentation and extension of autophagy through TNF-α inhibition resulted in the reduction of apoptosis and the enhancement of photoreceptor cell survival.


Assuntos
Autofagia , Células Fotorreceptoras/metabolismo , Descolamento Retiniano/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Apoptose , Proteína 5 Relacionada à Autofagia/metabolismo , Infliximab/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Células Fotorreceptoras/efeitos dos fármacos , Fator de Necrose Tumoral alfa/antagonistas & inibidores
9.
Front Pharmacol ; 8: 588, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28900398

RESUMO

As the third gasotransmitter, hydrogen sulfide (H2S) plays a crucial role in the physiology and pathophysiology of many systems in the body, such as the nervous, cardiovascular, respiratory, and gastrointestinal systems. The mechanisms for its effects, including inhibiting ischemic injury, reducing oxidative stress damage, regulating apoptosis, and reducing the inflammation reaction in different systems, have not been fully understood. Recently, H2S and its endogenous synthesis pathway were found in the mammalian retina. This review describes the production and the metabolism of H2S and the evidence of a role of H2S in the retina physiology and in the different retinal diseases, including retinal degenerative diseases and vascular diseases. In the retina, H2S is generated in the presence of cystathionine-ß-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase from L-cysteine. The role of endogenous H2S and its physiologic effect in the retina are still elusive. However, strong evidence shows that retina-derived H2S might play protective or deleterious role in the pathogenesis of retinal diseases. For example, by regulating Ca2+ influx, H2S can protect retinal neurons against light-induced degeneration. H2S preconditioning can mediate the anti-apoptotic effect of retinal ganglion cells in retinal ischemia/reperfusion injury. Treatment with H2S in rats relieves diabetic retinopathy by suppressing oxidative stress and reducing inflammation. Further studies would greatly improve our understanding of the pathophysiologic mechanisms responsible for retinal diseases and the potential for the H2S-related therapy of the retinal diseases as well.

10.
Chin Med J (Engl) ; 126(5): 930-6, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23489804

RESUMO

BACKGROUND: Skeletal muscle has recently been recognized as an endocrine organ that can express, synthesize and secrete a variety of bioactive molecules which exert significant regulatory effects. Hydrogen sulfide (H2S) is endogenously produced in mammalian tissues and participates in a number of physiological and pathophysiological processes. We aimed to verify whether H2S could be endogenously generated and released by rat skeletal muscle, and determine the biological effects of H2S in rat skeletal muscle. METHODS: The study was divided into two parts: detection of endogenous H2S generation and release in rat skeletal muscle and determination of antioxidative activity of skeletal muscle-derived H2S. H2S content and production in tissues were detected by sensitive sulfur electrode method. The expressions of H2S producing enzymes cystathionine ß-synthase, cystathionine γ-lyase and mercaptopyruvate sulfurtransferase were detected by real-time PCR and western blotting and their tissue distributions were observed by immunohistochemical and immunofluorescent analysis. Rat skeletal muscular ischemia-reperfusion (I-R) injury model was created and evaluated by histological analysis under microscope. The malondialdehyde (MDA) contents, hydrogen peroxide levels, superoxide anion and superoxide dismutase (SOD) activities were detected using spectrophotometer. RESULTS: H2S could be endogenously generated and released by skeletal muscle of Sprague-Dawley rats (H2S content: (2.06 ± 0.43) nmol/mg; H2S production: (0.17 ± 0.06) nmol×min(-1)×mg(-1)). Gene and protein expressions of the three H2S producing enzymes were detected in skeletal muscle, as well as the liver and kidney. Endogenous H2S content and production were decreased in skeletal muscles of rats with I-R skeletal muscle injury (P < 0.05). Furthermore, H2S significantly protected rat skeletal muscle against I-R injury and resulted in decreased MDA content, reduced hydrogen peroxide and superoxide anion levels, but increased SOD activity and protein expression in skeletal muscles (all P < 0.01). CONCLUSION: H2S generation pathway exists in rat skeletal muscle and it acts as an antioxidant in skeletal muscle.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Músculo Esquelético/metabolismo , Estresse Oxidativo/fisiologia , Animais , Western Blotting , Peróxido de Hidrogênio/metabolismo , Imuno-Histoquímica , Masculino , Malondialdeído/metabolismo , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA