Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473476

RESUMO

The properties of a catalyst support are closely related to the catalyst activity, yet the focus is often placed on the active species, with little attention given to the support properties. In this work, we specifically investigated the changes in support properties after the addition of P, as well as their impact on catalyst activity when used for catalyst preparation. We prepared the CeO2-ZrO2-P2O5-Al2O3 (CeZrPAl) composite oxides using the sol-gel, impregnation, and mechanical mixing methods, and characterized the support properties using techniques such as XRD, XPS, SEM-EDS, N2 adsorption-desorption, and Raman spectra. The results showed that the support prepared using the sol-gel method can exhibit a more stable phase structure, larger surface area, higher adsorption capacity for oxygen species, and greater oxygen storage capacity. The addition of an appropriate amount of P is necessary. On the one hand, the crystallization and growth of CePO4 can lead to a decrease in the Ce content in the cubic phase ceria-zirconia solid solution, resulting in a phase separation of the ceria-zirconia solid solution. On the other hand, CePO4 can lock some of the Ce3+/Ce4+ redox pairs, leading to a reduction in the adsorption of oxygen species and a decrease in the oxygen storage capacity of the CeZrPAl composite oxides. The research results indicated that the optimal P addition is 6 wt.% in the support. Therefore, we prepared a Pd/CeZrPAl catalyst using CeZrAl with 6 wt.% P2O5 as the support and conducted the catalytic oxidation of C3H8. Compared with the support without P added, the catalyst activity of the support loaded with P was significantly improved. The fresh and aged (1000 °C/5 h) catalysts decreased by 20 °C and 5 °C in T50 (C3H8 conversion temperature of 50%), and by 81 °C and 15 °C in T90 (C3H8 conversion temperature of 90%), respectively.

2.
Dalton Trans ; 51(48): 18562-18571, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36444876

RESUMO

The Pd distribution and the CeO2-Al2O3 combination are among the decisive factors for the performance of commercial three-way catalysts. Generally, the sufficient doping of Pd into ceria-based oxides and the intimate interaction between CeO2 and Al2O3 could both benefit the three-way catalytic reactions. However, in the present work, the moderate doping of Pd into CeO2 and less intimate CeO2-Al2O3 interaction were found to be responsible for the much higher catalytic activity (the decrease in T50 was 52, 119, or 55 °C for C3H6, CO, or NO) in PdCe/Al2O3-CP than PdCe/Al2O3-Imp, for which the Pd and Ce species were co-loaded onto Al2O3 through the co-precipitation or impregnation method, respectively. It was intriguing to find that the co-precipitated PdCeOx in PdCe/Al2O3-CP showed less sufficient doping of Pd into CeO2 than the co-impregnated PdCeOx in PdCe/Al2O3-Imp; as a result, both a higher fraction of highly active metallic Pd and a higher Pd dispersion were realized in PdCe/Al2O3-CP. Moreover, due to the less intimate CeO2-Al2O3 interaction, specifically the less severe penetration of the Pd and Ce species into Al2O3, PdCe/Al2O3-CP showed higher Pd dispersion, specific surface area, pore volume and size than PdCe/Al2O3-Imp. The presence of more abundant reactive Pd0, and the higher accessibility of the active Pd and CeO2 sites, together with improved redox properties and enriched oxygen vacancies contributed much to the enhanced three-way catalytic activity of PdCe/Al2O3-CP. Additionally, simultaneously optimizing the Pd distribution and the CeO2-Al2O3 combination in a single step, as reported in this work, is also highly desirable in industry.


Assuntos
Cério , Catálise , Óxidos , Oxirredução , Oxigênio
3.
J Hazard Mater ; 438: 129553, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35999727

RESUMO

Ammonia (NH3) and nitrous oxide (N2O) have been regarded as the typical secondary pollutants emitted from vehicles equipped with a three-way catalyst (TWC). MultiGas FT-IR Analyzer was applied to determine the outlet gas concentrations in the light-off experiments, in order to understand how different reaction conditions and catalyst aging affect the production of these two pollutants. It was found that N2O formation is favored by the existence of excess oxygen during NO reduction, whereas NH3 is readily formed within the lack of reactive oxygen species. Interestingly, the reduction of NO by H2 in presence of excess oxygen can also lead to NH3 formation when the active metal particles are large enough, which provides the rational explanation why the increased NH3 was emitted from older gasoline vehicles. The loss of the catalytically active sites and reducibility caused by thermal aging requires longer time to warm-up thereby favors the N2O and NH3 formation, which is the major reason for the higher CO, NOx, HC, N2O and NH3 emissions from the old gasoline vehicles than that of low-mileage gasoline vehicles.


Assuntos
Poluentes Atmosféricos , Amônia , Poluentes Atmosféricos/análise , Amônia/análise , Catálise , Gasolina , Óxido Nitroso , Oxigênio , Espectroscopia de Infravermelho com Transformada de Fourier
4.
J Hazard Mater ; 416: 125782, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33838505

RESUMO

Selective catalytic oxidation is regarded as an effective and favored method for the removal of hazardous ammonia. A number of M-Pt/USY (M=Mn, Fe, Ce and Pr) catalysts were prepared and the resulting materials were characterized using N2 adsorption/desorption, XRD, TEM, NH3-TPD, XPS and H2-TPR. It was found that the addition of non-stoichiometric metal oxides to Pt/USY leads to the generation of additional acid sites for ammonia chemisorption and that N2 selectivity improved with increased strong acidity of the bi-functional catalysts. The oxidation state of active Pt could be adjusted by the introduction of non-stoichiometric metal oxides with increased concentrations of oxidized Ptδ+ species observed in the order of FeOx >CeO2-x >MnO2-x >Pr6O11. High valence platinum surrounded by atomic oxygen that can act as a proton scavenger to drive ammonia activation, inhibiting O2 dissociation and therefore improve N2 selectivity. Fe-containing USY zeolite is demonstrated to be a preferred catalyst for the removal of ammonia, due to its high N2 selectivity and good hydrothermal stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA