Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777877

RESUMO

Fluorescence dye-based loop-mediated isothermal amplification (LAMP) is a sensitive nucleic acid detection method, but is limited to single-plex detection and may yield non-specific signals. In this study, we propose a bifunctional probe-based real-time LAMP amplification method for single-plexed or multiplexed detection. The bifunctional probe is derived by modifying the 5' end of the fluorophore and an internal quencher on one of the LAMP primers; therefore, it can simultaneously be involved in the LAMP process and signal amplification. The fluorescence intensity undergoes a cumulative exponential increase during the incorporation of the bifunctional probe into double-stranded DNA amplicons. The bifunctional probe-based LAMP method is simplified and cost-effective, as the primer design and experimental operations align entirely with the ordinary LAMP. Different from other current probe-based methods, this method does not require additional enzymes, sequences, or special probe structures. Also, it is 10 min faster than several other probe-based LAMP methods. The bifunctional probe-based LAMP method allows the simultaneous detection of the target Vibrio parahaemolyticus DNA and the internal amplification control in a one-pot reaction, demonstrating its potential for multiplexed detection.

2.
Front Chem ; 9: 815189, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35198541

RESUMO

Legionella, a waterborne pathogen, is the main cause of Legionnaires' disease. Therefore, timely and accurate detection and differentiation of Legionella pneumophila and non-Legionella pneumophila species is crucial. In this study, we develop an easy and rapid recombinase polymerase amplification assay combined with EuNPs-based lateral flow immunochromatography (EuNPs-LFIC-RPA) to specifically distinguish Legionella pneumophila and non-Legionella pneumophila. We designed primers based on the mip gene of Legionella pneumophila and the 5S rRNA gene of non-Legionella pneumophila. The recombinase polymerase amplification reaction could go to completion in 10 min at 37°C, and the amplification products could be detected within 5 min with EuNPs-LFIC strips. Using a florescent test strip reader, the quantitative results were achieved by reading the colored signal intensities on the strips. The sensitivity was 1.6 × 101 CFU/ml, and a linear standard linear curve plotted from the test strip reader had a correlation coefficient for the determination of Legionella pneumophila (R 2 = 0.9516). Completed concordance for the presence or absence of Legionella pneumophila by EuNPs-LFIC-RPA and qPCR was 97.32% (κ = 0.79, 95% CI), according to an analysis of practical water samples (n = 112). In short, this work shows the feasibility of EuNPs-LFIC-RPA for efficient and rapid monitoring of Legionella pneumophila and non-Legionella pneumophila in water samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA