Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1428907, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39508044

RESUMO

Objective: This study aimed to explore the effect of moxibustion at Governor Vessel (GV) acupoints, including Baihui (GV 20), Shenting (GV 24) and Dazhui (GV 14) for 14 days on glial vascular unit (GVU) in rats with multiple microinfarctions (MMI), and to explore its action mechanism. Methods: The effect and mechanism of moxibustion on vascular dementia (VD) were studied in MMI rats by means of behavioral and molecular biology experiments. Results: Rats receiving MMI showed impairment of memory function, reduction of cerebral blood flow, damage of blood-brain barrier (BBB) integrity and increased brain mass. MMI also increased neuronal degeneration in the hippocampus. Notably, levels of glial fibrillary acidic protein (GFAP) and complement component 3 significantly increased, but those of Connexin43 (CX43) and platelet derived growth factor receptor ß (PDGFRß) significantly decreased in the hippocampus of the rats receiving MMI. Moxibustion, as well as oxiracetam (ORC) treatment improved memory function and neuronal degeneration, ameliorated BBB integrity, increased cerebral blood flow and decreased brain mass. In addition, moxibustion as well as oxiracetam (ORC) treatment reduced the decrease of CX43 protein and increased PDGFRß protein level in the hippocampus of MMI rats. Moreover, moxibustion treatment reversed MMI-induced increase of the GFAP/CX43 ratio in vascular structural units. Importantly, after PDGFRß inhibition, VD rats treated with moxibustion had impaired learning and memory, decreased cerebral blood flow, and BBB disruption. Conclusion: Moxibustion treatment at various GV acupoints improved cerebral blood flow and repaired BBB function in rats with MMI, likely through protecting GVU.

2.
Zhongguo Zhen Jiu ; 44(8): 923-30, 2024 Aug 12.
Artigo em Chinês | MEDLINE | ID: mdl-39111792

RESUMO

OBJECTIVE: To observe the effects of electroacupuncture (EA) on fear extinction and sleep phase in single prolonged stress (SPS) mice, and explore its mechanism in view of the expression of relevant synaptic proteins. METHODS: Thirty-two C57BL/6J male mice were randomly divided into a control group, a model group, an EA group and a paroxetine (PRX) group, with 8 mice in each one. Modified SPS method was used to establish PTSD model in the model group, the EA group and the PRX group. Seven days after modeling completion, in the EA group, the intervention was delivered at "Baihui" (GV 20) and bilateral "Zusanli" (ST 36), with disperse-dense wave, 3 Hz/15 Hz in frequency and 1 mA in current intensity, for 30 min. In the PRX group, paroxetine solution (2.5 g/L) was administered intragastrically (10 mg/kg). The intervention was given once daily and for consecutive 10 days in the above two groups. The fear conditioning task and the elevated plus-maze test were adopted to evaluate the fear extinction and anxiety of the mice in each group. Using Medusa electroencephalogram (EEG) and electromyography (EMG) recording system from rats and mice, the sleep phase was determined in the mice. With Western blot method adopted, the protein expression of the postsynaptic density protein 95 (PSD95), activity-regulated cytoskeleton-associated protein (ARC), brain-derived neurotrophic factor (BDNF), N-methyl-D-aspartic acid receptor 2A (GluN2A), N-methyl-D-aspartic acid receptor 2B (GluN2B) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor 1 (GluA1) in the hippocampus was detected in the mice. RESULTS: Compared with the control group, the freezing time for the fear re-exposure in 3 min to 15 min and the fear extinction in 0 min to 3 min were prolonged (P<0.05), the fear extinction index decreased (P<0.05), and the open arm time (OT) of the elevated plus-maze was shortened (P<0.05) in the model group. When compared with the model group, in the EA group and the PRX group, the freezing time for the fear re-exposure in 3 min to 6 min and 12 min to 15 min, as well as the fear extinction in 0 min to 3 min was shortened (P<0.05), the fear extinction index increased (P<0.05); the OT in elevated plus-maze was longer in the mice of the EA group (P<0.05). The period of wake (Wake) was prolonged (P<0.05), the non-rapid eye movement period (NREM) and the total sleep time (Sleep) were reduced in the model group (P<0.05) in comparison with the control group. Compared with the model group, the Wake was declined (P<0.05), and the NREM and Sleep increased in the EA group and the PRX group (P<0.05). When compared with the control group, the protein expression of PSD95, ARC, BDNF, GluN2A and GluA1 in the hippocampus decreased (P<0.05), and that of GluN2B increased (P<0.05) in the model group. In the EA group and the PRX group, the protein expression of PSD95, ARC, BDNF, GluN2A and GluA1 in the hippocampus was elevated (P<0.05), and that of GluN2B reduced (P<0.05) when compared with the model group. CONCLUSION: Electroacupuncture at "Baihui" (GV 29) and "Zusanli" (ST 36) can ameliorate anxiety-like behavior, fear extinction disorder and abnormal sleep phase in SPS mice, which may be related to the regulation of synaptic transmission and synaptic plasticity expression in the hippocampus.


Assuntos
Eletroacupuntura , Medo , Camundongos Endogâmicos C57BL , Sono , Animais , Masculino , Camundongos , Humanos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Hipocampo/metabolismo , Estresse Psicológico/terapia , Estresse Psicológico/metabolismo , Memória , Pontos de Acupuntura , Proteína 4 Homóloga a Disks-Large/metabolismo
3.
Zhen Ci Yan Jiu ; 48(11): 1079-1087, 2023 Nov 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37984904

RESUMO

OBJECTIVES: To explore the effect of electroacupuncture (EA) at "Baihui" (GV20) and "Shenting" (GV24) on the microvascular structure and related protein expression in the hippocampus of vascular dementia (VD) rat model, and to investigate the mechanism of EA in the treatment of VD. METHODS: A total of 24 SD rats were randomly divided into sham operation, model, EA, and oxiracetam groups, with 6 rats in each group. Multiple cerebral infarction method was used to establish VD model. In the EA group, EA was applied to GV20 and GV24 for 30 min, once daily for 14 days. Rats in the oxiracetam group were treated with oxiracetam (50 mg/kg) by intraperitoneal injection, and the course of treatment was the same as that in the EA group. Learning and memory ability were evaluated by using Morris water maze test and new object recognition experiment. The cerebral blood flow was detected by laser doppler. The microvascular structure in the hippocampus was observed by transmission electron microscopy. The expression of vascular structure related proteins of platelet-derived growth factor receptor (PDGFR)-ß, platelet endothelial cell adhesion molecule-1(CD31), neural cadherin N-Cadherin, Zonula occludens protein-1(ZO-1) in the hippocampus were measured by Western blot. RESULTS: Compared with the sham operation group, the rats in the model group had a significant increase in time of first crossing the platform, a significant decrease in the number of crossing platform and the new object preference index (P<0.05), a significant decrease in cerebral blood flow (P<0.05), and a significant increase in the brain weight (P<0.05). The structure boundary of pericyte and endothelial cells in the microvessels of the hippocampal CA1 area of model group was blurred, accompanied by obvious edema around the vessels and the reduction of tight junctions. The protein expression levels of PDGFR-ß, CD31, N-Cadherin, ZO-1 were significantly decreased in the model group compared with those in the sham operation group (P<0.05). Compared with the model group, the time of first crossing the platform of rats in the EA and oxiracetam group was shortened, the number of crossing platform were increased (P<0.05), the cerebral blood flow was increased (P<0.05), the brain weight was decreased (P<0.05), the morphology and structure of pericyte and endothelial cells in the microvessels of hippocampal CA1 area were intact, accompanied by the increase of tight junctions. Additionally, Compared with the model group, the EA group had a significant increase in the new object preference index (P<0.05), the protein expression levels of PDGFR-ß, CD31, ZO-1 in the EA group were increased (P<0.05), and the expression of PDGFR-ß, N-Cadherin, ZO-1 in the oxiracetam group were increased (P<0.05). CONCLUSIONS: EA at GV20 and GV24 can improve the learning and memory ability of VD rats, and the mechanism may be related to the repair of microvascular structures and improvement of cerebral blood flow.


Assuntos
Demência Vascular , Eletroacupuntura , Ratos , Animais , Demência Vascular/genética , Demência Vascular/terapia , Demência Vascular/metabolismo , Ratos Sprague-Dawley , Células Endoteliais/metabolismo , Hipocampo/metabolismo , Caderinas/metabolismo
4.
Oxid Med Cell Longev ; 2022: 6080282, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211826

RESUMO

Cognitive impairment (CI) related to Alzheimer's disease (AD) and vascular cognitive disorders (VCDs) has become a key problem worldwide. Importantly, CI is a neuropsychiatric abnormality mainly characterized by learning and memory impairments. The hippocampus is an important brain region controlling learning and memory. Recent studies have highlighted the effects of acupuncture on memory deficits in AD and VCDs. By reviewing the literature published on this topic in the past five years, the present study intends to summarize the effects of acupuncture on memory impairment in AD and VCDs. Focusing on hippocampal synaptic plasticity, we reviewed the mechanisms underlying the effects of acupuncture on memory impairments through regulation of synaptic proteins, AD characteristic proteins, intestinal microbiota, neuroinflammation, microRNA expression, orexin system, energy metabolism, etc., suggesting that hippocampal synaptic plasticity may be the common as well as the core link underlying the above mechanisms. We also discussed the potential strategies to improve the effect of acupuncture. Additionally, the effects of acupuncture on synaptic plasticity through the regulation of vascular-glia-neuron unit were further discussed.


Assuntos
Terapia por Acupuntura , Doença de Alzheimer , MicroRNAs , Doença de Alzheimer/metabolismo , Animais , Cognição , Modelos Animais de Doenças , Hipocampo/metabolismo , Humanos , Transtornos da Memória/metabolismo , MicroRNAs/metabolismo , Plasticidade Neuronal , Orexinas/metabolismo , Orexinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA