Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(2): 1764-1775, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297721

RESUMO

Optoelectronic integrated circuits (OEICs) have enhanced integration and communication capabilities in various applications. With the continued increase in complexity and scale, the need for an accurate and efficient simulation environment compatible with photonics and electronics becomes paramount. This paper introduces a method using the Verilog-A hardware language in the electronic design automation (EDA) platform to create equivalent circuit and compact models for photonic devices, considering their dispersion, polarization, multimode, and bidirectional transmission characteristics. These models can be co-simulated alongside electrical components in the electronic simulator, covering both the time and frequency domains simultaneously. Model parameters can be modified at any stage of the design process. Using the full link of an optoelectronic transceiver as an example, analyses from our Verilog-A model system show a mean absolute percentage error of 1.55% in the time-domain and 0.0318% in the frequency-domain when compared to the commercial co-simulation system (e.g., Virtuoso-INTERCONNECT). This underscores the accuracy and efficiency of our approach in OEICs design. By adopting this method, designers are enabled to conduct both electrical-specific and photonic-specific circuit analyses, as well as perform optoelectronic co-simulation within a unified platform seamlessly.

2.
Micromachines (Basel) ; 14(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36985041

RESUMO

The inverse design method based on a generative adversarial network (GAN) combined with a simulation neural network (sim-NN) and the self-attention mechanism is proposed in order to improve the efficiency of GAN for designing nanophotonic devices. The sim-NN can guide the model to produce more accurate device designs via the spectrum comparison, whereas the self-attention mechanism can help to extract detailed features of the spectrum by exploring their global interconnections. The nanopatterned power splitter with a 2 µm × 2 µm interference region is designed as an example to obtain the average high transmission (>94%) and low back-reflection (<0.5%) over the broad wavelength range of 1200~1650 nm. As compared to other models, this method can produce larger proportions of high figure-of-merit devices with various desired power-splitting ratios.

3.
Opt Express ; 30(24): 43900-43909, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36523078

RESUMO

The transverse Anderson localization (TAL) can always be observed in one-dimensional (1D) disordered systems as long as the transverse dimension is significantly larger than the localization length. This paper presents a detailed modal analysis in one particular realization of the 1D disordered optical waveguides with wavelength-scale feature size based on the imaginary distance beam propagation method (BPM). The localized modes are independent of the physical properties of the external excitation. Additionally, we investigate how the boundaries of disordered waveguides affect the localized modes, which are only related to the design parameters such as feature size, refractive index contrast, and fill-fraction. Finally, we explore the impact of the design parameters on the average localized mode width in the 1D disordered waveguides.

4.
Opt Express ; 30(13): 24000-24008, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36225070

RESUMO

Spoof surface plasmon polaritons (SSPPs) have aroused widespread concern due to their strong ability in field confinement at low frequencies. For miniaturized integrated circuits, there is a pressing need for nonreciprocal spoof plasmonic platforms that provide diode functionalities. In this letter, we report the realization of nonreciprocal phase shifting in SSPPs using the transverse Faraday effect. A plasmonic coupled line is constructed by flipped stacking two corrugated metallic strips, in order to enhance the mode coupling between evanescent waves that carry opposite transverse spin angular momenta. With a transverse magnetized ferrite cladding, the SSPP mode is split into two circularly-polarized ones that show different propagation constants over a broad band. A nonreciprocal phase shifter compatible to standard microstrips is designed to validate the breaking of time-reversal symmetry in SSPPs. Microwave measurement demonstrates a differential phase shift up to 46.2°/cm from 12 GHz to 15 GHz. Owing to the advantages of strong field confinement and contactless ferrite integration, the proposed method enables an alternative pathway for nonreciprocal spoof interconnects.

5.
Opt Express ; 30(11): 19273-19287, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36221709

RESUMO

An improved technique of continuous shaping current-injected waveforms based on the single-mode rate equations is proposed to suppress relaxation oscillations (ROs) from direct modulation of distributed feedback laser (DFB). The signal expression of shaping current is deduced theoretically from the dependence of DFB desired output waveforms in detail, and the specific parameters derivation of the different polynomial degree is also discussed necessarily. Furthermore, a polynomial p-function with inverse operation is adopted to construct the Fourier series corresponding to injection current waveform signal. The equivalent circuit model with DFB phenomenological description is injected into shaping current signal to verity the proposed validity by evaluating the static and dynamic characteristics. The simulation results of the optimized shaping signal show the good agreement with the desired output pulse including rising and falling edge and suppress the ROs amplitude dramatically at the two jump edges.

6.
J Opt Soc Am A Opt Image Sci Vis ; 39(10): 1857-1865, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36215558

RESUMO

A narrow beam propagating through the disordered optical fiber first undergoes diffusive broadening, until its width becomes comparable to the localization length. The study of numerical algorithms and statistical methods in the simulation analysis process of disordered optical fibers demonstrates that the influence of polarization characteristics and transverse grids on calculation errors is critical for statistical numerical simulation in disordered systems. We performed a detailed numerical analysis of the effect of different design parameters in disordered fibers on the localization effect-that is, the localization length, including the refractive index contrast, feature size, and fill-fraction. The results show that the optimal fill-fraction is 50%, and that higher refractive index contrast and larger feature size relative to the wavelength both result in a smaller effective beam width. Finally, numerical evidence is also provided that optical images can be transported via transverse Anderson localization.

7.
J Opt Soc Am A Opt Image Sci Vis ; 39(1): 32-36, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35200974

RESUMO

In this paper, an efficient modeling method for a photonics-focusing grating coupler is proposed and studied. The focusing grating coupler can be divided into two parts: the cylindrical coordinate slab waveguide and the Cartesian coordinate slab waveguide. Using the cylindrical slab modes and the two-dimensional complex mode-matching method, we can obtain the efficient compact model for the focusing grating coupler. This model reduces the three-dimensional structure into a two-dimensional structure by using the effective index method to reduce the computation time as well as the computational resources. The simulation result, which is dependent on the finite-difference time-domain method, demonstrates the accuracy of the advanced compact model. This model can also be integrated into the circuit simulation.

8.
Opt Lett ; 45(21): 5917-5920, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33137031

RESUMO

Strong magneto-optical effect with low external magnetic field is of great importance to achieve high-performance isolators in modern optics. Here, we experimentally demonstrate a significant enhancement of the magneto-optical effect and nonreciprocal chiral transmission in low-biased gyrotropic media. A designer magneto-optical metasurface consists of a gyrotropy-near-zero slab doped with magnetic resonant inclusions. The immersed magnetic dopants enable efficient nonreciprocal light-matter interactions at the subwavelength scale, providing a giant macroscopic nonreciprocity and strong robustness against the bias disturbance. Microwave measurements reveal that the metasurface can act as a chiral isolator for circular polarization, with extremely weak intrinsic gyromagnetic activity. We also demonstrate its capability of signal isolation for circularly polarized antennas. Our findings provide an experimental verification of nonreciprocal photonic doping with low static magnetic fields.

9.
Opt Express ; 27(26): 38029-38038, 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31878575

RESUMO

Chiral metamirror is one of the recently developed metadevices which can reflect designated circularly polarized waves, mimicking the exoskeleton of iridescent green beetles. Here, an optically transparent metamirror that can absorb microwave chiral photons in a broadband spectrum is demonstrated. A coupled mode theory is adopted to reveal the underlying physics for the improved bandwidth performance. Excellent agreements have been observed between numerical and experimental results, indicating a bandwidth for chiral absorption as high as 2.37 GHz. The optical transparence of the resistive patterns and substrate make the designed metamirrors suitable as microwave coatings in front of optical devices, which may find potential applications in cascaded optical systems working for both microwave and optical signals.

10.
Opt Lett ; 44(12): 3050-3053, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31199378

RESUMO

Enhancing nonreciprocal light-matter interaction at subwavelength scales has attracted enormous attention due to high demand for compact optical isolators. Here, we propose a significant enhancement of the magneto-optical effect in low-biased gyromagnetic media via photonic doping. Magnetic particles immersed in a gyrotropy-near-zero medium act as dopants that largely modify the macroscopic gyromagnetic effects as well as the gyroelectric ones. Around the resonance frequency, the gyromagnetic activity is largely increased and even exceeds unity, thus providing a photonic band in which the wavenumber of one circularly polarized wave becomes purely imaginary. The sign of gyromagnetic activity flips at two chiral modes, and an equivalent switching of the external bias is revealed. A proof-of-concept low-biased planar isolator is designed with a thickness of only 1/28 wavelength and a degree of isolation achieving as high as 0.94. This methodology is robust against disturbance of the biased magnetic field and can be flexibly extended to other frequencies, thus offering a promising platform to achieve giant optical isolation with infinitesimally intrinsic magneto-optical effects and reduced sizes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA