Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; 20(10): e2306508, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37919860

RESUMO

The design and fabrication of NO-evolving core-shell nanoparticles (denoted as NC@Fe), comprised of BNN6-laden COF@Fe3 O4 nanoparticles, are reported. This innovation extends to the modification of 3D printed polyetheretherketone scaffolds with NC@Fe, establishing a pioneering approach to multi-modal bone therapy tailored to address complications such as device-associated infections and osteomyelitis. This work stands out prominently from previous research, particularly those relying on the use of antibiotics, by introducing a bone implant capable of simultaneous NO gas therapy and photothermal therapy (PPT). Under NIR laser irradiation, the Fe3 O4 NP core (photothermal conversion agent) within NC@Fe absorbs photoenergy and initiates electron transfer to the loaded NO donor (BNN6), resulting in controlled NO release. The additional heat generated through photothermal conversion further propels the NC@Fe nanoparticles, amplifying the therapeutic reach. The combined effect of NO release and PPT enhances the efficacy in eradicating bacteria over a more extensive area around the implant, presenting a distinctive solution to conventional challenges. Thorough in vitro and in vivo investigations validate the robust potential of the scaffold in infection control, osteogenesis, and angiogenesis, emphasizing the timeliness of this unique solution in managing complicated bone related infectious diseases.


Assuntos
Estruturas Metalorgânicas , Polímeros , Benzofenonas , Polietilenoglicóis , Cetonas
2.
Acta Biomater ; 170: 303-317, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37597680

RESUMO

The strategies for modulating the local inflammatory microenvironment to inhibit intervertebral disc degeneration (IVDD) have garnered significant interest in recent years. In this study, we developed a "self-contained" injectable hydrogel capable of storing Mg2+ while carrying nucleus pulposus (NP) cells, with the aim of inhibiting IVDD through immunoregulation. The hydrogel consists of sodium alginate (SA), poly(N-isopropylacrylamide) (PNIPAAm), silicate ceramics (SC), and NP cells. When injected into the NP site, PNIPAAm gelates instantly under body temperature, forming an interpenetrating network (IPN) hydrogel with SA. Ca2+ released from the SC can crosslink the SA in situ, forming a SA/PNIPAAm hydrogel with an interpenetrating network (IPN) encapsulating the NP cells. Moreover, inside the hydrogel, Mg2+ released from SC are effectively encapsulated and maintained at a desirable concentration. These Mg2+ facilitates the local cell matrix synthesis and promotes immunomodulation (upregulating M2 / downregulating M1 macrophage polarization), thus inhibiting the IVDD progression. The proposed hydrogel has biocompatibility and is shown to enhance the expression of collagen II (COL II) and aggrecan. The potential of the injectable hydrogel in IVD repair has also been successfully demonstrated by in vivo studies. STATEMENT OF SIGNIFICANCE.

3.
Nanoscale ; 15(20): 9148-9161, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37144404

RESUMO

Desirable antibacterial and osseointegration abilities are essentially important for long-term survival of a Ti-orthopedic implant. Herein, a near-infrared light (NIR) excited antibacterial platform with excellent osseointegration composed of perovskite calcium titanate/nickel hydroxide on a Ti implant (Ni(OH)2@CaTiO3/Ti) was designed and successfully fabricated. The construction of the heterostructure efficiently separated the photogenerated electron-hole pairs to produce sufficient reactive oxygen species (ROS), which enabled the photoactivated bacterial inactivation (PBI) of Ti implants. The results showed that the surface-modified Ti implant displayed remarkable antibacterial ability with bacterial inhibition rates of 95.5% for E. coli and 93.8% for S. aureus under NIR excitation. Also, the intervention of Ni(OH)2 could create a slightly alkaline surface on the Ti implant, which synchronized with Ca-rich CaTiO3 to regulate the osteogenic microenvironment in favor of the adhesion, proliferation and differentiation of MC3T3-E1 cells as well as the up-regulation of osteogenesis-related gene expressions. The in vivo implantation experiments further confirmed that the heterostructured coating prominently accelerated the formation of new bone and promoted the osseointegration of Ti implants. Our work may provide a novel concept for improving the antibacterial and osseointegration abilities of Ti implants in orthopedic and dental applications.


Assuntos
Osseointegração , Staphylococcus aureus , Osseointegração/fisiologia , Escherichia coli , Propriedades de Superfície , Titânio/farmacologia , Titânio/química , Osteogênese , Antibacterianos/farmacologia
4.
Bioconjug Chem ; 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36961940

RESUMO

Inspired by the negative Poisson's ratio (NPR) effects of the annulus fibrosus (AF) in intervertebral discs (IVDs), we designed a re-entrant honeycomb model and then 3D printed it into a poly(ε-caprolactone) (PCL) scaffold with NPR effects, which was followed by in situ polymerization of polypyrrole (PPy), thus constructing a PPy-coated NPR-structured PCL scaffold (-vPCL-PPy) to be used as the AF implant for the treatment of lumbar herniated discs. Mechanical testing and finite element (FE) simulation indicated that the NPR composite implant could sustain axial spine loading and resist nucleus pulposus (NP) swelling while displaying uniform stress diffusion under NP swelling and contraction. More interestingly, the NPR-structured composite scaffold could also apply a reacting force to restrain NP herniation owing to the NPR effect. In addition, the in vitro biological assessment and in vivo implantation demonstrated that the NPR composite scaffold exhibited good biocompatibility and exerted the ability to restore the physiological function of the disc segments.

5.
ACS Appl Mater Interfaces ; 13(40): 47327-47340, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34587454

RESUMO

In this work, we developed the first 3D-printed polyetheretherketone (PEEK)-based bone scaffold with multi-functions targeting challenging bone diseases such as osteosarcoma and osteomyelitis. A 3D-printed PEEK/graphene nanocomposite scaffold was deposited with a drug-laden (antibiotics and/or anti-cancer drugs) hydroxyapatite coating. The graphene nanosheets within the scaffold served as effective photothermal agents that endowed the scaffold with on-demand photothermal conversion function under near-infrared laser irradiation. The bioactive hydroxyapatite coating significantly boosted the stem cell proliferation in vitro and promoted new bone growth in vivo. The presence of antibiotics and anti-cancer drugs enabled eradication of drug-resistant bacteria and ablation of osteosarcoma cancer cells, the treatment efficacy of which can be further enhanced by on-demand laser-induced heating. The promising results demonstrate the strong potential of our multi-functional scaffold in applications such as bone defect repair and multimodal treatment of osteosarcoma and osteomyelitis.


Assuntos
Antibacterianos/uso terapêutico , Antineoplásicos/uso terapêutico , Benzofenonas/química , Osteomielite/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Polímeros/química , Alicerces Teciduais/química , Animais , Antibacterianos/efeitos da radiação , Antineoplásicos/efeitos da radiação , Regeneração Óssea/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/uso terapêutico , Terapia Combinada , Durapatita/química , Durapatita/uso terapêutico , Grafite/química , Grafite/efeitos da radiação , Grafite/uso terapêutico , Humanos , Raios Infravermelhos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanocompostos/química , Nanocompostos/efeitos da radiação , Nanocompostos/uso terapêutico , Terapia Fototérmica , Impressão Tridimensional , Compostos de Amônio Quaternário/uso terapêutico , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA