Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202404921, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953122

RESUMO

The cathode interlayer is crucial for the development of organic solar cells (OSCs), but the research on simple and efficient interlayer materials is lagging behind. Here, a donor-acceptor (D-A) typed selenophene-fused perylene diimide (PDI) derivative (SePDI3) is developed as cathode interlayer material (CIM) for OSCs, and a non-fused PDI derivative (PDI3) is used as the control CIM for comparison. Compared to PDI3, SePDI3 shows a stronger self-doping effect and better crystallinity, resulting in better charge transport ability. Furthermore, the interaction between SePDI3 and L8-BO can form an efficient extraction channel, leading to superior charge extraction behavior. Finally, benefitting from significantly enhanced charge transport and extraction capacity, the SePDI3-based device displays a champion PCE of 19.04 % with an ultrahigh fill factor of 81.65 % for binary OSCs based on PM6 : L8-BO active layer, which is one of the top efficiencies reported to date in binary OSCs based novel CIMs. Our work prescribes a facile and effective fusion strategy to develop high-efficiency CIMs for OSCs.

2.
Molecules ; 29(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38999112

RESUMO

With the rapid development of industry, the discharge of heavy metal-containing wastewater poses a significant threat to aquatic and terrestrial environments as well as human health. This paper provides a brief introduction to the basic principles of ion-imprinted polymer preparation and focuses on the interaction between template ions and functional monomers. We summarized the current research status on typical heavy metal ions, such as Cu(II), Ni(II), Cd(II), Hg(II), Pb(II), and Cr(VI), as well as metalloid metal ions of the As and Sb classes. Furthermore, it discusses recent advances in multi-ion-imprinted polymers. Finally, the paper addresses the challenges faced by ion-imprinted technology and explores its prospects for application.

3.
Angew Chem Int Ed Engl ; 63(21): e202319755, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38386897

RESUMO

All-polymer solar cells (all-PSCs) have been regarded as one of the most promising candidates for commercial applications owing to their outstanding advantages such as mechanical flexibility, light weight and stable film morphology. However, compared to large amount of new-emerging excellent polymer acceptors, the development of high-performance polymer donor lags behind. Herein, a new D-π-A type polymer donor, namely QQ1, was developed based on dithienoquinoxalineimide (DTQI) as the A unit, benzodithiophene with thiophene-conjugated side chains (BDTT) as the D unit, and alkyl-thiophene as the π-bridge, respectively. QQ1 not only possesses a strong dipole moment, but also shows a wide band gap of 1.80 eV and a deep HOMO energy level of -5.47 eV, even without halogen substituents that are commonly indispensable for high-performance polymer donors. When blended with a classic polymer acceptor PY-IT, the QQ1-based all-PSC delivers an outstanding PCE of 18.81 %. After the introduction of F-BTA3 as the third component, a record PCE of 19.20 % was obtained, the highest value reported so far for all-PSCs. The impressive photovoltaic performance originates from broad absorption range, reduced energy loss, and compact π-π stacking. These results provide new insight in the rational design of novel nonhalogenated polymer donors for further development of all-PSCs.

4.
ACS Appl Mater Interfaces ; 16(6): 7317-7326, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38305907

RESUMO

Designing giant-molecule acceptors is deemed as an up-and-coming strategy to construct stable organic solar cells (OSCs) with high performance. Herein, two giant dimeric acceptors, namely, DYV and DYFV, have been designed and synthesized by linking two Y-series derivatives with a vinyl unit. DYFV exhibits more red-shifted absorption, down-shifted energy levels, and enhanced intermolecular packing than DYV because the intramolecular noncovalent interaction (H···F) of DYFV leads to better coplanarity of the backbone. The D18:DYFV film owns a distinct nanofibrous nanophase separation structure, a more dominant face-on orientation, and more balanced carrier mobilities. Therefore, the D18:DYFV OSC achieves a higher photoelectron conversion efficiency of 17.88% and a longer-term stability with a t80 over 45,000 h compared with the D18:DYV device. The study demonstrates that the intramolecular noncovalent interaction is a superior strategy to design giant-molecule acceptors and boost the photovoltaic performance and stability of the OSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA